Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\)
\(\Rightarrow\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)=3.2\left(x+y+z\right)=18\)
(Áp dụng bất đẳng thức Bunhiacopxki)
Vậy : Max P = \(3\sqrt{2}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\\sqrt{x+y}=\sqrt{y+z}=\sqrt{z+x}\end{cases}\Leftrightarrow x=y=z=1}\)
áp dụng bất đẳng thức Cô-si cho 2 số dương, ta có:
\(\sqrt{x+y}\)< hoặc =\(\frac{x+y}{2}\)
\(\sqrt{y+z}\)< hoặc =\(\frac{y+z}{2}\)
\(\sqrt{x+z}\)< hoặc =\(\frac{x+z}{2}\)
=>\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\)< hoặc =\(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z=3\)
dấu = xảy ra<=>x=y=z
Vậy GTLN của biểu thúc là 3 khi x=y=z
\(a,\)\(\sqrt{\left(x-1\right)\left(x-3\right)}\)
\(đkxđ\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
\(\orbr{\begin{cases}x-1\ge0;x-3\ge0\\x-1< 0;x-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge1;x\ge3\\x< 1;x< 3\end{cases}\Rightarrow}\orbr{\begin{cases}x\ge3\\x< 1\end{cases}}}\)
\(b,\)\(\sqrt{\frac{4}{x+3}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}x+3\ne0\\x+3\ge0\end{cases}\Rightarrow x+3>0}\)\(\Rightarrow x>-3\)
Sửa đề: BC=10cm
a: AC=8cm
Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
=>góc C=37 độ
b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
\(BH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
CH=BC-BH=6,4cm
c: AM=BC/2=5cm
\(HM=\sqrt{5^2-4.8^2}=1.4\left(cm\right)\)
\(S=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)
Ta có : \(\dfrac{1}{\sqrt{2019}-\sqrt{2018}}=\dfrac{\sqrt{2019}+\sqrt{2018}}{\left(\sqrt{2019}-\sqrt{2018}\right)\left(\sqrt{2019}+\sqrt{2018}\right)}=\dfrac{\sqrt{2019}+\sqrt{2018}}{2019-2018}=\sqrt{2019}+\sqrt{2018}< \sqrt{2020}+\sqrt{2019}\)