K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
8 tháng 11 2017

Ta có: \(x+\sqrt{x^2+1}-\dfrac{1}{x+\sqrt{x^2+1}}=x^2+\sqrt{x^2+1}-\dfrac{x-\sqrt{x^2+1}}{\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)}\)

Đáp án đúng là B

2 tháng 8 2016

a) \(\frac{2}{x-1}< 0\)=> x-1<=>x<1

b) \(\frac{x-7}{x-11}>0\)

<=> \(\begin{cases}x-7>0\\x-11>0\end{cases}\)hoặc\(\begin{cases}x-7< 0\\x-11< 0\end{cases}\)<=>x>11 hoặc x<7

d) \(\frac{x+10}{x-7}< 0\)

<=> \(\begin{cases}x+10< 0\\x-7>0\end{cases}\)hoặc \(\begin{cases}x+10>0\\x-7< 0\end{cases}\)

=> 7<x<10

2 tháng 8 2016

a) Để \(\frac{2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

b) Để \(\frac{x-7}{x-11}>0\)

\(\Leftrightarrow\begin{cases}x-7>0\\x-11>0\end{cases}\) hoặc \(\begin{cases}x-7< 0\\x-11< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>7\\x>11\end{cases}\) hoặc \(\begin{cases}x< 7\\x< 11\end{cases}\)

\(\Leftrightarrow x>11\)  hoặc \(x< 7\)

d) Để \(\frac{x+10}{x-7}< 0\)

\(\Leftrightarrow\begin{cases}x+10>0\\x-7< 0\end{cases}\) hoặc \(\begin{cases}x+10< 0\\x-7>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-10\\x< 7\end{cases}\) hoặc \(\begin{cases}x< -10\\x>7\end{cases}\) (vô nghiệm)

\(\Leftrightarrow-10< x< 7\)

\(a,\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{4}{x-11}< 0\)

\(\Rightarrow x-11< 0\)

\(\Rightarrow x< 11\)

\(2,\frac{x+2}{x-6}=\frac{x-6+8}{x-6}=1+\frac{8}{x-6}\)

Để phân số trên là số hữu tỉ âm \(\frac{\Rightarrow8}{x-6}< 1\Rightarrow x-6>8\Rightarrow x>14\)

\(3,\frac{x-3}{x+7}=\frac{x+7-10}{x+7}=1-\frac{10}{x+7}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{10}{x+7}< 1\Rightarrow x+7>10\Rightarrow x>3\)

 Để \(x=\frac{a-20}{-3}\) ( a ∈ N* ) nhận giá trị dương

=> a - 20 nhận giá trị âm

=> a nhỏ hơn 20

a) S = { a ∈ N* | a < 20 }

    \(S=\left\{...;17;18;19\right\}\)

b) ( Không hiểu đề , thông cảm , bạn làm nốt nhé ! )

15 tháng 8 2021

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

21 tháng 7 2017

Bài 1:

a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu

Mà -2017 là âm 

=> 2m - 8 cũng là âm

=> 2m < 8

=> m < 4 

Vậy với m < 4 thì x là số hữa tỉ dương

b)   Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác  dấu

Mà -2017 là âm 

=> 2m - 8  là dương

=> 2m > 8 

=> m > 4 

Vậy với m > 4 thì x là số hữa tỉ âm

c)  Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )

=> 2m - 8 = 0

=> 2m = 8

=> m = 4

Vậy với m = 4 thì x không âm không dương

Bài 2:

Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)

\(\Rightarrow2x+6-4-6⋮x+3\)

\(\Rightarrow\left(2x+6\right)-10⋮x+3\)

\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))

\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)

Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên

a: Để \(\dfrac{x+2}{-5}>0\) thì x+2<0

=>x<-2

b: Để \(\dfrac{3-x}{2}< 0\) thì 3-x<0

=>x>3

c: Để \(\dfrac{x-1}{8}< 0\) thì x-1<0

=>x<1

d: Để \(\dfrac{2x-4}{-8}>0\) thì 2x-4<0

=>x<2

e: Để \(\dfrac{x-5}{8}=2\)thì x-5=16

=>x=21

8 tháng 8 2015

cái này mình chưa học tới nên không biết

8 tháng 8 2015

a) Ta có: \(\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm.

=>\(\frac{4}{x-11}<1\)

=>4<x-11

=>x-11>4

=>x-11+11>4+11

=>x>45

Vậy để phân số trên là số hữu tỉ âm thì x>45

Các câu sau bạn làm tương tự nha.