K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2016

Với P>3 thì P có dạng 3n+1 hoặc 3n+2

*P=3n+1

=>P2+1994=(3n+1)2+1994=9n2+6n+1995=3.(3n2+2n+665) chia hết cho 3 

=>P2+1994 không phải số nguyên tố

*P=3n+2

=>P2+1994=(3n+2)2+1994=9n2+12n+1998=3.(3n2+4n+666) chia hết cho 3 

=>P2+1994 không phải là số nguyên tố

Suy ra: P không thể lớn hơn 3 =>P có thể là 2 hoặc 3

*Với P=2

=>P2+1994=1998 không phải là số nguyên tố

*Với P=3

=>P2+1998=2007 là số nguyên tô

Vậy P=3

21 tháng 2 2016

Với P>3 thì P có dạng 3n+1 hoặc 3n+2

*P=3n+1

=>P2+1994=(3n+1)2+1994=9n2+6n+1995=3.(3n2+2n+665) chia hết cho 3 

=>P2+1994 không phải số nguyên tố

*P=3n+2

=>P2+1994=(3n+2)2+1994=9n2+12n+1998=3.(3n2+4n+666) chia hết cho 3 

=>P2+1994 không phải là số nguyên tố

Suy ra: P không thể lớn hơn 3 =>P có thể là 2 hoặc 3

*Với P=2

=>P2+1994=1998 không phải là số nguyên tố

*Với P=3

=>P2+1998=2007 là số nguyên tô

Vậy P=3

8 tháng 3 2016

Ta thấy các số nguyên tố đều là số lẽ trừ 2

Với p là số lẽ =>\(p^2+1\text{ là số chẵn ; }p^4+1\text{ là số chẵn}\)

=>\(p^2+1;p^4+1\text{ không phải là số nguyên tố}\)

=>p không phải là số lẽ =>p=2

AH
Akai Haruma
Giáo viên
9 tháng 1 2017

Lời giải:

-Nếu $p$ không chia hết cho $3\Rightarrow p\geq 2$

Ta biết rằng mọi số chính phương không chia hết cho $3$ thì chia $3$ dư $1$. Do đó $p^2+2\equiv 0\pmod 3$. Suy ra để $p^2+2$ là số nguyên tố thì $p^2+2=3\rightarrow p=1$ (vô lý)

Vậy $p$ thỏa mãn đề bài phải chia hết cho $3$, hay $p=3$. Thử vào $p^2+2=11,p^3+2=29\in\mathbb{P}$ nên ta có đpcm

9 tháng 2 2019

cảm ơn bạn thanghoa

31 tháng 3 2016

Với p = 3 -> p²+2 = 11 là số nguyên tố. Nên p=3 là 1 nghiệm. 

Với các số nguyên tố khác 3 thì chúng đều không chia hết cho 3. Nên chúng có dạng p = 3k+1 hoặc p=3k+2. Với k là 1 số nguyên không âm. 

Mặt khác ta có: p² = 9k²+6k+1 đồng dư với 1 mod 3. Hoặc p² = 9k² + 12k + 4 = 9k² + 12k + 3 +1 đồng dư với 1 mod 3. (*) 

Do đó p²+2 sẽ đồng dư với 1 + 2 = 3 mod 3. Tức p²+2 chia hết cho 3. Mà p²+2 là số nguyên tố nên p²+2 chỉ có thể bằng 3 -> p = 1 (vô lý). 

Vậy p = 3 là nghiệm duy nhất của bài toán. 

3 tháng 8 2018

\(p^2+2^p\) nha bn

22 tháng 3 2016

Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

25 tháng 1 2017

\(m;n\in N\Rightarrow m;n\ge0\)

\(p\) là số nguyên tố

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do \(\left(m-1\right)\)\(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)

Lưu ý: \(m-1< m+n\left(1\right)\)

\(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\)\(p^2(2)\)

Từ \((1)\)\(\left(2\right)\) ta có \(m-1=1\)\(m+n=p^2\)

\(\Rightarrow m=2\)\(2+n=p^2\)

Vậy\(A=p^2-n=2\)

14 tháng 2 2016

Vì p là số nguyê tố lớn hơn 3 nên p có 1 trong 2 dạng: 3k+1 và 3k+2

+) nếu p = 3k+1 thì 2p+1 = 6k+3, chia hết cho 3 nên 2p+1 là hợp số(loại)

=>p có dạng 3k+2

=>4p+1 = 12k + 9 , chia hết cho 3

=> 4p+1 là hợp số

Vậy 4p+1 là hợp số

23 tháng 11 2022

bạn có thể tính dễ hiểu hơn ko

 

27 tháng 4 2016

Vì p+10 là SNT nên p không chia hết cho 2

Xét p=3 thì p+10=3+10=13 (thỏa)

                    p+14=3+14=17( thỏa)

Xét p>3 thì p có dạng 3k+1;3k+2(kEN*)

Nếu p có dạng 3k+1 thì p+14=3k+1+14=3k+15=3*(k+5)>3(hợp số )

Nếu p có dạng 3k+2 thì p+10=3k+2+10=3k+12=3*(k+4)>3(hợp số )

Vậy p=3

27 tháng 4 2016

3)a)Gọi d là ƯCLN(12n+1;30n+2)

Ta có 12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d

           30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d

Nên [5*(12n+1)-2*(30n+2)] chia hết cho d

hay (60n+5)-(60n+4) chia hết cho d

hay         1 chia hết cho d

nên d=1

Vì ƯCLN(12n+1;30n+2)=1 nên phân số\(\frac{12n+1}{30n+2}\)là phân số tối giản

vì (x-2)^2*(y-3)^2=4

mà (x-2)^2 luôn>=0;(y-3)^2 luôn>=0;x,y là SNT nên 

suy ra  (x-2)^2*(y-3)^2=1*4=4*1(vì ko có số nào mũ 2=2)

trường hợp 1:(x-2)^2=1 và (y-3)^2=4

                     x=  3                   y=5

trường hợp 2:(x-2)^2=4 và  (y-3)^2=1

                          x=4(hợp số)loại

vậy số NT x là3;y là5

 

 

 

 

 

 

 

 

 

 

 

 

 

17 tháng 4 2017

Vì p là số nguyên tố lớn hơn 3 nên p có dạng là 3k+1 hoặc 3k+2. ( k\(\in\)N*)

Nếu p=3k+1

\(\Rightarrow\) 2p+1 =2(3k+1) +1 =6k+2+1=6k+3=3(2k+1) \(⋮\) 3

\(\Rightarrow\) 2p+1 là hợp số.( trái với đề bài)

\(\Rightarrow\) p=3k+1 ( loại)

\(\Rightarrow\) p=3k+2

\(\Rightarrow\) 2p+1 = 2(3k+2)+1=6k+4+1=6k+5 là số nguyên tố ( thỏa mãn)

\(\Rightarrow\) 4p+1 = 4(3k+2)+1=12k+8+1=12k+9=3(4k+3)\(⋮\) 3

\(\Rightarrow\) 4p+1 là hợp số.

Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 là số nguyên tố thì 4p+1 là hợp số.

6 tháng 7 2017

Vì p là số nguyên tố lớn hơn 3 nên p có dạng là 3k+1 hoặc 3k+2 ( k\(\in\) N)

Nếu p=3k+1

=> 2p+1+ 2(3k+1) +1= 6k+ 2+1=6k+3= 3(2k+1)\(⋮\) 3

=> 2p+1 là hợp số( trái với đề bài)

=> p= 3k+1 (loại)

=> p= 3k+2

=> 2p+1= 2(3k+2) +1= 6k+4+1= 6k+5 là số nguyên tố( thoả mãn)

=> 4p+1=4( 3k+2)+1- 12k+ 8+1=12k+9=3(4k+3)\(⋮\) 3

4p+1 là hợp số

Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 là số nguyên tố thì 4p+1 là hợp số.

Chúc bn hok tốt!