K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  3x+5y=501 
=> x=(501-5y)/3 =167 - 5.y/3 
x,y nguyên dương 
=> 167 - 5/3y>0 và 5.y/3 nguyên 
=> 1<=y<=100 và y chia hết cho 3. 
Từ 1 đến 100 có 33 số chia hết cho 3. 
Vậy có 33 nghiệm nguyên dương của phương trình 3x + 5y =501

5 tháng 12 2015

ta có : 3x chia hết cho 3        (1)

            501 chia hết cho 3       (2) 

từ (1) và (2) => 5y chia hết cho 3

mà (3;5) = 1 ( nguyên tố cùng nhau ) 

nên y chia hết cho 3 

vậy y = 3k 

thay y=3k vào phương trình ta có :

3x + 15k = 501 

\(<=>x=\frac{501-5k}{3}\)

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:

Vì $5y=501-3x\vdots 3$ nên $y\vdots 3$

Đặt $y=3y_1$ với $y_1\in\mathbb{Z}^+$ thì:

$3x+15y_1=501$

$x+5y_1=167$

$5y_1=167-x\leq 166$

$\Rightarrow y_1\leq 33,2$. Mà $y_1$ nguyên dương nên $y_1\in\left\{1;2;...;33\right\}$

Tức là $y_1$ có 33 giá trị thỏa mãn, kéo theo có 33 giá trị $x,y$ tương ứng thỏa mãn.

Vậy PT có 33 cặp nghiệm nguyên dương.

7 tháng 11 2016

Vì (3;5)=1 nên pt có nghiệm nguyên

\(3x-5y=9\\ \Rightarrow y=\frac{3x-9}{5}=\frac{1-2x}{5}+x-2\)

Đặt t=\(\frac{1-2x}{5}\left(t\in Z\right)\)

\(\Rightarrow x=\frac{1-5t}{2}\)\(=\frac{t-1}{2}+1-3t\)

Đặt n=\(\frac{t-1}{2}\left(n\in Z\right)\)\(\Rightarrow t=2n+1\)

\(\Rightarrow\begin{cases}y=t+x-2\\x=n+1-3t\\t=2n+1\end{cases}\Rightarrow\begin{cases}y=-3n-3\\x=-5n-2\end{cases}\left(n\in Z\right)}}\)

17 tháng 1 2019

\(\Leftrightarrow y=\dfrac{3x-9}{5}=\dfrac{3\left(x-3\right)}{5}\)\(\Rightarrow x-3⋮5\)\(\Rightarrow x=5k+3\left(k\in Z\right)\)\(\Rightarrow y=\dfrac{3.5k}{5}=3k\)

Vậy pt có vô số nghiệm với nghiệm tổng quát (x;y)=(5k+3\(\left(k\in Z\right)\) ;3k).

To approve a single suggestion, mouse over it and click "✔" Click the bubble to approve all of its suggestions.
24 tháng 6 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ

<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ 

=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

26 tháng 11 2021

sai r nha tại x là nguyên dương nên khác 0 chứ :)))

27 tháng 1 2021

Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)

Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)

=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)

Mà (x+2y)(3x+4y)=96 chẵn 

=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)

Từ (1) và (2) => 3x+4y, x+2y cùng chẵn

Ta có bảng sau: 

3x+4y482244166128
x+2y248424616812
x44-9416-444-26-4-16
y-2171-634121614

Vậy ...

8 tháng 2 2021

x=4; y=1

Bài 1: 

3x+2y=7

\(\Leftrightarrow3x=7-2y\)

\(\Leftrightarrow x=\dfrac{7-2y}{3}\)

Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)

4 tháng 10 2021

\(1,3x+2y=7\\ \Leftrightarrow2y=7-3x\left(1\right)\)

Vì \(2y⋮2\)

\(\Leftrightarrow3x-7⋮2\\ \Leftrightarrow3x-9⋮2\\ \Leftrightarrow3\left(x-3\right)⋮2\\ \Leftrightarrow x-3⋮2\\ \Leftrightarrow x.lẻ\)

Đặt \(x=2k+1\left(k\in Z\right)\)

Thay vào (1), ta được :

\(\left(1\right)\Leftrightarrow2y=3\left(2k+1\right)-7\\ \Leftrightarrow2y=6k+3-7\\ \Leftrightarrow2y=6k-4\\ \Leftrightarrow y=3k-2\)

Vậy \(x=2k+1;y=3k-2\left(k\in Z\right)\)

\(2,C_1:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+2y=2\\4x+5y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+5y=2\\7y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{7}\\y=\dfrac{5}{7}\end{matrix}\right.\\ C_2:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1+2x\\4x+5y=3\end{matrix}\right.\Leftrightarrow4x+5+10x=3\\ \Leftrightarrow x=-\dfrac{1}{7}\Leftrightarrow y=1-\dfrac{2}{7}=\dfrac{5}{7}\)