K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2021

\(x^4-1>x^2+2x\)

\(\Leftrightarrow x^4-x^2-2x-1>0\)

\(\Leftrightarrow x^4-\left(x+1\right)^2>0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2+x+1\right)>0\)

\(\Leftrightarrow x^2-x-1>0\) (Vì \(x^2+x+1>0\))

\(\Leftrightarrow\left|x\right|>\dfrac{1+\sqrt{5}}{2}\)

\(\Rightarrow\dfrac{1+\sqrt{5}}{2}< \left|x\right|\le2019\)

\(\Rightarrow2\le\left|x\right|\le2019\)

\(\Leftrightarrow\left[{}\begin{matrix}2\le x\le2019\\-2019\le x\le-2\end{matrix}\right.\)

Vì \(x\in Z\Rightarrow\) có 4036 giá trị thỏa mãn

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

26 tháng 9 2018

chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!

NV
21 tháng 2 2021

\(\Leftrightarrow\sqrt{-x^2-2x+15}-x^2-2x+15\le a+15\)

Đặt \(\sqrt{-x^2-2x+15}=t\ge0\)

Đồng thời ta có: \(\sqrt{-x^2-2x+15}=\sqrt{\left(x+5\right)\left(3-x\right)}\le\dfrac{1}{2}\left(x+5+3-x\right)=4\)

\(\Rightarrow0\le t\le4\)

BPT trở thành: \(t^2+t\le a+15\Leftrightarrow t^2+t-15\le a\) ; \(\forall t\in\left[0;4\right]\)

\(\Leftrightarrow a\ge\max\limits_{t\in\left[0;4\right]}\left(t^2+t-15\right)\)

Xét hàm \(f\left(t\right)=t^2+t-15\) trên \(\left[0;4\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)

\(\Rightarrow f\left(t\right)_{max}=4\Rightarrow a\ge4\)

21 tháng 2 2021

anh ơi, sao chỗ đố lại <= 1/2(x=5+3-x)=4 á

hồi anh từng  giải thích mà giờ quên r   hé hé

21 tháng 1 2021

a, \(\left|3x+1\right|>2\)

\(\Leftrightarrow\left(\left|3x+1\right|\right)^2>4\)

\(\Leftrightarrow9x^2+6x+1>4\)

\(\Leftrightarrow9x^2+6x-3>0\)

\(\Leftrightarrow3\left(3x-1\right)\left(x+1\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< -1\end{matrix}\right.\)

b, \(\left|2x-1\right|\le1\)

\(\Leftrightarrow\left(\left|2x-1\right|\right)^2\le1\)

\(\Leftrightarrow4x^2-4x+1\le1\)

\(\Leftrightarrow4x\left(x-1\right)\le0\)

\(\Leftrightarrow0\le x\le1\)

21 tháng 1 2021

c, ĐK: \(x\ne13\)

\(\left|\dfrac{2}{x-13}\right|>\dfrac{8}{9}\)

\(\Leftrightarrow\dfrac{1}{\left|x-13\right|}>\dfrac{4}{9}\)

\(\Leftrightarrow4\left|x-13\right|< 9\)

\(\Leftrightarrow16\left(x^2-26x+169\right)< 81\)

\(\Leftrightarrow16x^2-416x+2623< 0\)

\(\Leftrightarrow\dfrac{43}{4}< x< \dfrac{61}{4}\)

\(\Rightarrow\) Có hai giả trị thỏa mãn yêu cầu bài toán

NV
2 tháng 5 2019

ĐKXĐ: \(0\le x\le2\)

Đặt \(\sqrt{-x^2+2x}=a\Rightarrow0\le a\le1\)

BPT trở thành: \(-a^2+a-3+m\le0\)

\(\Rightarrow a^2-a+3\ge m\) (1)

Để (1) có nghiệm \(\Rightarrow m\le\max\limits_{\left[0;1\right]}\left(a^2-a+3\right)\)

Đặt \(f\left(a\right)=a^2-a+3\)

\(f\left(0\right)=3\) ; \(f\left(1\right)=3\); \(f\left(\frac{1}{2}\right)=\frac{11}{4}\)

\(\Rightarrow\max\limits_{\left[0;1\right]}f\left(a\right)=3\Rightarrow m\le3\)