K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

\(2x+5=5+2x\)

\(\Leftrightarrow5=5\) (luôn đúng)

Vậy pt đã cho có vô số nghiệm

8 tháng 4 2022

\(2x+5=5+2x\)

\(\Leftrightarrow2x+5-5-2x=0\)

\(\Leftrightarrow0=0\) (hợp lí)

Chọn D.vô số nghiệm

8 tháng 4 2022

\(3x-5=5+3x=>-5=5\)

==>C, vô nghiệm

8 tháng 4 2022

\(3x-5=5+3x\)

\(\Leftrightarrow3x-5-5-3x=0\)

\(\Leftrightarrow-10=0\left(VL\right)\)

Chọn C.vô nghiệm

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

NM
13 tháng 1 2022

a. để phương trình nhận x=3 là nghiệm ta có 

\(a\left(3+2\right)-a^2-2=0\Leftrightarrow a^2-5a+2=0\Leftrightarrow a=\frac{5\pm\sqrt{17}}{2}\)

b. Để phương trình có duy nhất 1 nghiệm âm ta có : 

\(\hept{\begin{cases}a\ne0\\x=\frac{a^2-2a+2}{a}< 0\end{cases}\Leftrightarrow a< 0}\) do \(a^2-2a+2>0\forall a\)

c. Để phương trình đã cho vô nghiệm thì a=0

d. Phương trình đã cho không thể có vô số nghiệm thực.

13 tháng 1 2022

32+1123+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}gfdrrffhjxxojmu09\)

22 tháng 4 2017

Ô vuông thứ 2: Một phương trình bậc nhất một ẩn luôn có một nghiệm duy nhất.

(Bạn cần lưu ý vì đây là phương trình bậc nhất một ẩn nên a \(\ne\) 0, do đó phương trình luôn có một nghiệm duy nhất. Không có trường hợp a = 0 )

23 tháng 4 2017

đánh vào ô vuông thứ 4