Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Với m=2 thì hpt trở thành:
x-2y=5
2x-y=7
<=>
2x-4y=10
2x-y=7
<=>
-3y=3
2x-y=7
<=>
y=-1
x=3
b)\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{\frac{6m+2my-2}{m-1}-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{m^2+2m+my+y+3=0}\)
*m2+2m+my+y+3=0
<=>y.(m+1)=-m2-2m-3
*Với m=-1 =>PT vô nghiệm
*Với m khác -1 =>PT có nghiệm là: \(y=\frac{-m^2-2m-3}{m+1}=-m-1-\frac{2}{m+1}\)
bí tiếp
a)Với y=1 ta có hpt:
\(\int^{2x+3=3+m}_{x+2=m}\Leftrightarrow\int^{2x=m}_{x+2=2x}\Leftrightarrow\int^{2.2=m}_{x=2}\Leftrightarrow\int^{m=4}_{x=2}\)
Vậy nghiệm của hpt là (2;1) khi m=4
b)đợi suy nghĩ
hpt \(\Leftrightarrow\hept{\begin{cases}mx-my=m^4+1\\my=-\left(m^2-2m\right)x+m^3-m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}my=mx-m^4-1\\y=-\left(m-2\right)x+m^2-m-\frac{2}{m}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=x-m^3-\frac{1}{m}\\y=-\left(m+2\right)x+m^2-m-\frac{2}{m}\end{cases}}\)
Để hpt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}-\left(m-2\right)=0\\-m^3-\frac{1}{m}\ne m^2-m-\frac{2}{m}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}m=2\\-m^4-1\ne m^3-m^2-2\end{cases}}\Leftrightarrow m=2\)
Vậy với m=2 thì hpt vô nghiệm
a) Thay m=2 vào hpt, ta có \(\hept{\begin{cases}-x+2y=6\\6x-y=-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=6x+4\\-x+12x+8=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11x=-2\\y=6x+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{11}\\y=\frac{32}{11}\end{cases}}\)
Vậy m=2 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{11};\frac{32}{11}\right)\)
b) Ta có \(\hept{\begin{cases}\left(m-3\right)x+2y=6\\y=3mx+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3mx+4\left(1\right)\\mx-3x+6mx+8=6\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(7m-3\right)x=-2\)
Hpt có nghiệm duy nhất \(\Leftrightarrow\)pt (2) có nghiệm duy nhất \(\Leftrightarrow7m-3\ne0\Leftrightarrow m\ne\frac{3}{7}\)(*)
Khi đó \(\left(2\right)\Leftrightarrow x=\frac{-2}{7m-3}\). Thay vào (1) \(\Leftrightarrow y=\frac{-6m}{7m-3}+4=\frac{-6m+28m-12}{7m-3}=\frac{22m-12}{7m-3}\)
Vậy \(m\ne\frac{3}{7}\)thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{7m-3};\frac{22m-12}{7m-3}\right)\)
Vì 2x+y>0\(\Rightarrow\frac{-4}{7m-3}+\frac{22m-12}{7m-3}>0\)
\(\Leftrightarrow\frac{22m-16}{7m-3}>0\)
\(\Leftrightarrow\orbr{\begin{cases}22m-16>0;7m-3>0\\22m-16< 0;7m-3< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11};m>\frac{3}{7}\\m< \frac{8}{11};m< \frac{3}{7}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)
Kết hợp vs đk (*) \(\Rightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)thì 2x+y>0
\(ĐK:x\ge1\)
Pt (1) <=> \(y^2-y\sqrt{x-1}-y+\sqrt{x-1}=0\)
<=> \(\left(y^2-y\right)-\left(y\sqrt{x-1}-\sqrt{x-1}=0\right)\)
<=> \(y\left(y-1\right)-\sqrt{x-1}\left(y-1\right)=0\)
<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\Leftrightarrow\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)
+) Với y-1=0 <=> y=1
Thế vào phương trình thứ (2) ta có: \(x^2+1-\sqrt{7x^2-3}=0\Leftrightarrow7x^2+7-7\sqrt{7x^2-3}=0\)
Đặt \(\sqrt{7x^2-3}=t\left(t\ge0\right)\)
Ta có phương trình ẩn t:
\(t^2-7t+10=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=5\end{cases}}\)
Với t =2 ta có: \(\sqrt{7x^2-3}=2\Leftrightarrow7x^2-3=4\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(l\right)\end{cases}}\)
Với t=5 ta có: \(\sqrt{7x^2-3}=5\Leftrightarrow7x^2-3=25\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(l\right)\end{cases}}\)
Vậy hệ có 2nghiem (x,y) là (2,1) và (1, 1)
+) Với \(y-\sqrt{x-1}=0\Leftrightarrow y=\sqrt{x-1}\)
Thế vào phương trình (2) ta có:
\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\Leftrightarrow\left(\sqrt{x-1}-1\right)+\left(x^2+1-\sqrt{7x^2-3}\right)=0\)
<=> \(\frac{\left(x-1\right)-1}{\sqrt{x-1}+1}+\frac{x^4+2x^2+1-7x^2+3}{x^2+1+\sqrt{7x^2-3}}=0\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^4-5x^2+4}{x^2+1+\sqrt{7x^2-3}}=0\)
<=> \(\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x^2-4\right)}{x^2+1+\sqrt{7x^2-3}}=0\)
<=> \(\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}\right)=0\)
vì \(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}>0\)với mọi lớn hơn hoặc bằng 1
phương trình trên <=> x-2=0<=> x=2 thỏa mãn đk
Với x=2 ta có: \(y=\sqrt{2-1}=1\)
Hệ có 1nghiem (2,1)
Kết luận:... (2, 1), (1,1)
Đáp án A