Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay tọa dộ của điểm T vào dg thẳng d ta dc: -2.(-2) - 6 = -2 (Thỏa mãn)
Vậy điểm T có thuộc dg thẳng d
b) Pt hoành độ giao điểm của (d) và (P) là: -8x2 = -2x - 6
<=> 8x2 - 2x - 6 = 0
<=> (x - 1)(8x + 6) = 0 <=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{4}\end{cases}}\)
* Với x = 1 => y = -8
* Với x = -3/4 => y = -9/2
Tự kết luận nha
a, Gọi ptđt (d) có dạng y = ax + b
\(\left(d\right)//y=3x+1\Leftrightarrow\hept{\begin{cases}a=3\\b\ne1\end{cases}}\)
đt (d) đi qua A(3;7) <=> \(7=3a+b\)(*)
Thay a = 3 vào (*) ta được : \(9+b=7\Leftrightarrow b=-2\)( tmđk )
Vậy ptđt có dạng y = 3x - 2
b, Hoành độ giao điểm thỏa mãn phương trình
\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2\)
\(\Rightarrow y=1;y=4\)
Vậy (d) cắt (P) tại A( 1;1 ) ; B( 2 ; 4 )
a, Phương trình đường thẳng (d) là: y = ax + b
Vì đường thẳng (d) song song với đường thẳng y = 3x + 1 nên
⇒⇒ {a=a′b≠b′{a=a′b≠b′ ⇔⇔ {a=3b≠1{a=3b≠1
Với a = 3 ta được pt đường thẳng (d): y = 3x + b
Vì đường thẳng (d) đi qua điểm A(3;7) nên thay x = 3; y = 7 ta được:
7 = 3.3 + b
⇔⇔ b = -2 (TM)
Vậy phương trình đường thẳng (d) là: y = 3x - 2
Chúc bn học tốt!
k mình nha
Do đường thẳng đã cho đi qua A(−1,0)A(−1,0) nên
0=−a+b0=−a+b
<−>a=b<−>a=b
Xét ptrinh hoành độ giao điểm
12x2=ax+a12x2=ax+a
<−>x2−2ax−2a=0<−>x2−2ax−2a=0
Do hai đồ thị tiếp xúc nên ptrinh trên có 1 nghiệm duy nhất, tức là Δ′=0Δ′=0 hay
a2+2a=0a2+2a=0
<−>a(a+2)=0<−>a(a+2)=0
Vậy a=0a=0 hoặc a=−2a=−2
Do a≠0a≠0 nên a=−2a=−2.
Vậy y=−2x−2y=−2x−2
1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)
\(\Rightarrow4=1^2=1\) ( vô lí )
=> A ( \(1;4\) ) không thuộc đồ thị hàm số (P)
2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k
=> 4 = k . 1
=> k = 4
=> Phương trình đường thẳng (d) là
y = 4x
a ) Với k = 2 , ta có (d) : y= 2x
Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2x=0\\x=2\Rightarrow y=2x=4\end{matrix}\right.\)
Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )
b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ
(P) y = \(x^2\) luôn đi qua gốc tọa độ
=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )
1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)
⇒4=12=1⇒4=12=1 ( vô lí )
=> A ( 1;41;4 ) không thuộc đồ thị hàm số (P)
2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k
=> 4 = k . 1
=> k = 4
=> Phương trình đường thẳng (d) là
y = 4x
a ) Với k = 2 , ta có (d) : y= 2x
Phương trình hoành độ giao điểm của (d) và (P) là
x2=2x⇒x2−2x=0⇒x(x−2)=0x2=2x⇒x2−2x=0⇒x(x−2)=0
⇒[x=0⇒y=2x=0x=2⇒y=2x=4⇒[x=0⇒y=2x=0x=2⇒y=2x=4
Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )
b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ
(P) y = x2x2 luôn đi qua gốc tọa độ
=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )
Phần 1 bạn tự vẽ nhé (dùng bang giá trị)
2)Hoành độ giao điểm là ngiệm của phương trình:
2x2=4x-2
Để (d) tiếp xúc(P)<=>delta=0<=>x=1
vậy... (bạn tự viết nốt nhé!!!)