Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng Bđt tam giác, ta được:
7-2<a<7+2
\(\Leftrightarrow5< a< 9\)
hay \(a\in\left\{6;7;8\right\}\)
b) Trường hợp 1: Độ dài cạnh bên còn lại là 1cm
=> Trái với BĐT tam giác vì 1cm+1cm<4cm
Trường hợp 2: Độ dài cạnh bên còn lại là 4cm
=> Đúng với BĐT tam giác vì 4cm+4cm>1cm; 4cm+1cm>5cm
Chu vi tam giác là:
4cm+4cm+1cm=9(cm)
Gọi a, b, c lần lượt là các cạnh của tam giác ấy (a, b, c \(\in\) N*)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)
=> \(\frac{a}{3}=\)2 \(\Rightarrow\) a=2.3=6
=> \(\frac{b}{4}=2\Rightarrow b=2.4=8\)
=> \(\frac{c}{5}=2\Rightarrow c=2.5=10\)
Vậy các cạnh của tam giác lần lượt bằng 6 cm ,8 cm ,10 cm
Giải:
Gọi các cạnh của tam giác lần lượt là a, b, c \(\left(a,b,c>0\right)\)
Ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a + b + c = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)
+) \(\frac{a}{3}=2\Rightarrow a=6\)
+) \(\frac{b}{4}=2\Rightarrow b=8\)
+) \(\frac{c}{5}=2\Rightarrow10\)
Vậy ba cạnh của tam giac lần lượt là 6, 8, 10
Đề bài này nên là các tam giác vuông
các tam giác là (3,4,5);(5,12,13)
Gọi x,y,zx,y,z là các cạnh của tam giác vuông (1≤x≤y<z)(1≤x≤y<z). Ta có :
x2+y2=z2(1)x2+y2=z2(1)
xy=2(x+y+z)(2)xy=2(x+y+z)(2)
Từ (1)(1) ta có :
z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4
⇒(x+y−2)2=(z+2)2⇒(x+y−2)2=(z+2)2
⇒x+y−2=z+2(x+y≥2)⇒x+y−2=z+2(x+y≥2)
Thay z=x+y−4z=x+y−4 vào (2)(2) ta được :
(x−4)(y−4)=8(x−4)(y−4)=8
⇔x−4=1;y−4=8⇔x−4=1;y−4=8 hoặc x−4=2;y−4=4x−4=2;y−4=4
⇔x=5;y=12⇔x=5;y=12 hoặc x=6;y=8
Chu vi hinh tam giác là
12.2=24(cm)
Gọi dộ dài ba cạnh là a b c (a+b+c=24)
Mà chúng tỉ lệ với 3 4 5
Suy ra \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số băng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)=\(\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)
\(\frac{a}{3}=2\) a=2.3=6
\(\frac{b}{4}=2\) b=2.4=8
\(\frac{c}{5}=2\) c=5.2=10
a=6cm
b=8cm
c=10cm
Vậy cạnh lớn nhất của tam giác là 10 cm
Gọi độ dài cạnh góc vuông của tam giác là a,ba,b, độ dài cạnh huyền là cc (ĐK: a,b,c∈Z+a,b,c∈Z+;a+b>c;c>a;c>ba+b>c;c>a;c>b)
Theo đề bài:
a2+b2=c2a2+b2=c2 (Định lí Py−ta−goPy−ta−go)
và ab=3.(a+b+c)ab=3.(a+b+c)
⟺2ab=6(a+b+c)⟺2ab=6(a+b+c)
⟺a2+2ab+b2=c2+6(a+b+c)⟺a2+2ab+b2=c2+6(a+b+c)
⟺(a+b)2−6(a+b)+9=c2+6c+9⟺(a+b)2−6(a+b)+9=c2+6c+9
⟺(a+b−3)2=(c+3)2⟺(a+b−3)2=(c+3)2
⟺a+b−3=c+3∨a+b−3=−3−c⟺a+b−3=c+3∨a+b−3=−3−c
⟺a+b=c+6∨a+b=−c⟺a+b=c+6∨a+b=−c (TH sau vô lí vì a+b>0>−ca+b>0>−c)
⟺a+b=c+6⟺a+b=c+6.
⟺6a+6b=6c+36⟺6a+6b=6c+36 (1)(1)
Vì a2+b2=c2a2+b2=c2
⟺(a+b)2−2ab=c2⟺(a+b)2−2ab=c2
⟺(c+6)2−2ab=c2⟺(c+6)2−2ab=c2
⟺c2+12c+36−2ab=c2⟺c2+12c+36−2ab=c2
⟺12c+36=2ab⟺12c+36=2ab
⟺6c+18=ab⟺6c+18=ab (2)(2)
Từ (1),(2)(1),(2) →6a+6b−ab=6c+36−6c−18→6a+6b−ab=6c+36−6c−18
⟺ab−6a−6b+18=0⟺ab−6a−6b+18=0
⟺(a−6)(b−6)=18⟺(a−6)(b−6)=18
Giả sử a≥ba≥b
Giải phương trình tích trên được (a;b)=(24;7);(12;9);(15;8)(a;b)=(24;7);(12;9);(15;8)
Tìm được (a;b;c)=(24;7;25);(12;9;15);(15;8;17)
Gọi cạnh đáy là a ; hai cạnh bên là b,c ta có
a + b + c = 24
a = b hoặc b = c hoặc c = a
a, b, c phải thuộc N* ( vì độ dài các cạnh không thể là số âm hoặc là 0 )
Xét các trường hợp
Nếu a = 1 vậy b,c bằng (24-1)/2=11.5 không thuộc N (không thoả mãn)
Nếu a = 2 vậy b,c bằng (24-2)/2=11 (chấp nhận)
Cứ như vậy xét đến a bằng 24 thì (b+c) còn lại = 0 (không chấp nhận)
Đếm các tam giác được chấp nhận, như vậy là ra!
Kết quả là 11 tam giác.