K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2015

(-3)20 có tận cùng là chữ số 1 cộng với 1 nữa thì có tận cùng là chữ số 2. Vậy cũng có thể có cũng có thể không. Theo mình thì là không nhưng bạn nên xem lại đề bài !!!~~

22 tháng 1 2016

có hoặc không

**** nha

15 tháng 3 2016

thế mà cũng trả lời

24 tháng 12 2017

giả sử tồn tại 2 số thỏa mãn 

vì \(\left(-3\right)^{20}+1\) không chi hết cho 3=> cả 2 số đó đều k chia hết cho 3

=> tích 2 số đó là \(\left(3a-1\right)\left(3a+1\right)=9a^2-1\equiv2\left(mod3\right)\)

mà \(\left(-3\right)^{20}+1\equiv1\left(mod3\right)\)

=> vô lí=> điều giả sử sai=> không tồn tạ 2 số nào nhứ thế

20 tháng 5 2015

Gọi 2 số nguyên liên tiếp là a và a + 1.

Tích của chúng là a.(a + 1)

-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.

-Nếu a  = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2 + 6k + 3k + 2 chia cho 3 dư 2.

-Nếu a = 3k + 2 thì  a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2 + 9k + 3k + 3 chia hết cho 3.

 Số (-3)20 chia hết cho 3 nên (-3)20 + 1 chia cho 3 dư 1. Do đó (-3)20 + 1 không phải là tích của hai số nguyên liên tiếp.

2 tháng 3 2020

(-29).(85-47)-85.(47-29)

22 tháng 4 2016

Gọi 2 số nguyên liên tiếp là a và a + 1.

Tích của chúng là a.(a + 1)

-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.

-Nếu a  = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2 + 6k + 3k + 2 chia cho 3 dư 2.

-Nếu a = 3k + 2 thì  a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2 + 9k + 3k + 3 chia hết cho 3.

 Số (-3)20 chia hết cho 3 nên (-3)20 + 1 chia cho 3 dư 1. Do đó (-3)20 + 1 không phải là tích của hai số nguyên liên tiếp.

6 tháng 1 2017

Gọi 2 số nguyên liên tiếp là a và a + 1.

Tích của chúng là a.(a + 1)

-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.

-Nếu a  = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2+6k+3k+2 chia cho 3 dư 2

--Nếu a = 3k + 2 thì  a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2+9k+3k+3 chia cho 3 dư 1

Do đó [-3]2016 +1 ko phải là tích 2 số nguyên liên tiếp 

6 tháng 1 2017

k cho mik nha, chúc bạn học tốt

28 tháng 1 2016

Gọi 2 số nguyên liên tiếp là a và a + 1.

Tích của chúng là a.(a + 1)

-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.

-Nếu a  = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2 + 6k + 3k + 2 chia cho 3 dư 2.

-Nếu a = 3k + 2 thì  a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2 + 9k + 3k + 3 chia hết cho 3.

 Số 32014 chia hết cho 3 nên 32014 + 1 chia cho 3 dư 1. Do đó 32014 + 1 không phải là tích của hai số nguyên liên tiếp.