Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm rồi dễ lắm bạn ạ
đùa tí bạn ấn vào dòng chữ xanh này nhé Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
a , n không thoả mãn yêu cầu bài toán
b, n2+2006 là hợp số
bài này giải dài lắm
Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số
Ta có : n là số nguyên tố > 3
=> n2 = không chia hết cho 3
=> n2 = 3k + 1
vậy 3k+1+2006 = 3k + 2007
ta có: 3k chia hết cho 3
2007 chia hết cho 3 nên n2+2006 là hợp số
a, Đặt n2+2006=a2(a EN)
suy ra 2006=a2-n2=(a-n) (a+n) (1)
Mà (a+n)-(a-n)
TH1: a+n và a-n cùng lẻ suy ra (a-n) (a+n) lẻ, (trái với đề (1))
TH2: a+n và a-n là chẵn suy ra (a-n) (a+n) chia hết cho 2,( trái với đề (1))
Vậy ko có n nào thỏa mãn n2+2006 là số chính phương
b, Vì n>3 và là số nguyên tố suy ra n ko chia hết cho 3
suy ra n=3k+1hoặc n=3k+2
n=3k+1 hoặc n2+2006=(3k+2)2+2006=9k2+6k+2006 chia hết cho 3 và lớn hơn 3
suy ra n2+2006 là hợp số
a) Vi n2 + 2006 la so chinh phuong nen n2 + 2006 = a2 suy ra n2 - a2 = 2006 hay (n+a)x(n-a) = 2006
Ta có a - n + n + a = 2a chia hết cho 2 và a+n - a+n = 2n chia hết cho 2
Suy ra (ã-n)x(ã+n) có cùng tính chẵn lẻ
TH1 : a-n và a+n cũng là số lẻ suy ra (a+n) x (a-n) là số lẻ mà 2006 là số chẵn (loại)
TH2 : a-n và a+n cũng là số chẵn suy ra (a-n)x(a+n) là số chẵn
suy ra a-n chia hết cho 2 và a+n chia hết cho 2 nên (a-n)x(a+n) chia hết cho 4
mà 2006 ko chia hết cho 4 nè ko có giá trị nào của n thỏa mãn đề bài
do \(n^2+2006\)là scp nên \(n^2+2006\)có dạng \(m^2\)ta có
\(n^2+2006=m^2\)
\(\Leftrightarrow m^2-n^2=2006\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)=2006\)
trường hợp này chỉ tìm n thôi ha.....\(\Rightarrow m-n;m+n\inƯ\left(2006\right)\)bn giải tiếp ha
b. do n là số ngto >3 nên n có dạng 3k+1 và 3k+2 .....thay vào n xong tính ta đc\(n^2+2006\)là hợp số ( cả 2 th)
a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)
\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )
Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2
=> a + n và a - n có cùng tính chẵn lẻ
TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )
TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1
Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương
b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))
TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
Vậy \(n^2+2006\)là hợp số
Là hợp số
Vì tổng tất cả các chữ số bằng 4014 chia hết co 3
hợp số