K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

em cảm ơn ạ

5 tháng 8 2020

à anh ơi còn câu này nữa a

sin^3x+cos^3x=cos2x

NV
2 tháng 9 2021

Đặt \(cosx-sinx=t\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)

\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\dfrac{1-t^2}{2}\)

Pt trở thành:

\(t\left(1+\dfrac{1-t^2}{2}\right)+1=0\)

\(\Leftrightarrow t^3-3t-2=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+1\right)^2=0\Rightarrow\left[{}\begin{matrix}t=2\left(loại\right)\\t=-1\end{matrix}\right.\)

\(\Rightarrow cosx-sinx=-1\)

\(\Leftrightarrow\sqrt[]{2}cos\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=cos\left(\dfrac{3\pi}{4}\right)\)

\(\Leftrightarrow...\)

2 tháng 9 2021

Dạ em cảm ơn ạ!! ^^

30 tháng 9 2021

Đk: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+m2\pi\\x\ne\dfrac{\pi}{4}+n\pi\end{matrix}\right.\left(m,n\in Z\right)\)

PT \(\Leftrightarrow1=2\sqrt{2}sinx.cosx\left(sinx-cosx\right)+2cos^2x\)

\(\Leftrightarrow\sqrt{2}.2sinx.cosx\left(sinx-cosx\right)+\left(2cos^2x-1\right)=0\)

\(\Leftrightarrow\sqrt{2}sin2x\left(sinx-cosx\right)+\left(cosx-sinx\right)\left(cosx+sinx\right)=0\)

\(\Leftrightarrow\sqrt{2}sin2x=sinx+cosx\)

\(\Leftrightarrow\sqrt{2}sin2x=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\dfrac{\pi}{4}+k2\pi\\2x=\pi-x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{\pi}{4}+k\dfrac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

30 tháng 9 2021

Cảm mơn nhiều nha :3

NV
31 tháng 10 2020

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\sin^2x+sinx+m=0\end{matrix}\right.\)

Pt \(cosx=1\Leftrightarrow x=k2\pi\) có 2 nghiệm trên đoạn đã cho

\(\Rightarrow sin^2x+sinx+m=0\) (1) có 4 nghiệm trên đoạn đã cho

Đặt \(sinx=t\Rightarrow t^2+t=-m\)

Trên \(\left[0;2\pi\right]\) ứng với mỗi \(sinx=t\) có tối đa 2 giá trị x

Pt \(t^2+t=-m\) cũng có tối đa 2 nghiệm \(t\)

Do đó để (1) có 4 nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}sinx=t\\t^2+t=-m\end{matrix}\right.\) đều có 2 nghiệm pb

\(\Leftrightarrow\left\{{}\begin{matrix}-1< t< 1\\t^2+t=-m\end{matrix}\right.\)

Xét \(f\left(t\right)=t^2+t\) trên \(\left(-1;1\right)\)

\(-\frac{b}{2a}=-\frac{1}{2}\) ; \(f\left(-\frac{1}{2}\right)=-\frac{1}{4}\) ; \(f\left(1\right)=2\) ; \(f\left(-1\right)=0\)

\(\Rightarrow y=-m\) cắt \(y=f\left(t\right)\) tại 2 điểm pb \(\Leftrightarrow-\frac{1}{4}< -m< 0\)

\(\Leftrightarrow0< m< \frac{1}{4}\)

29 tháng 7 2020

\(a\text{) }sin^3x+cos^3x=sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)=sinx+cosx\\ \Leftrightarrow-\frac{1}{2}sin2x\left(sinx+cosx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=-cosx=sin\left(x-\frac{\pi}{2}\right)\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{2}-x+a2\pi\\2x=b\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+a\pi\\x=\frac{b\pi}{2}\end{matrix}\right.\)

\(\text{b) }sin^3x+2sin^2x\cdot cosx-3cos^3x=0\\ \Leftrightarrow\left(sin^3x-cos^3x\right)+2cosx\cdot\left(sin^2x-cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(sinx\cdot cosx+1\right)+\left(sinx-cosx\right)\left(2sinx\cdot cosx+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(3sinx\cdot cosx+1+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(\frac{3}{2}sin2x+2+cos2x\right)=0\)

Với \(sinx-cosx=0\)

\(\Leftrightarrow sinx=cosx=sin\left(\frac{\pi}{2}-x\right)\\ \Leftrightarrow x=\frac{\pi}{2}-x+a2\pi\\ \Leftrightarrow x=\frac{\pi}{4}+a\pi\)

Với \(\frac{3}{2}sin2x+2+cos2x=0\)

\(\Leftrightarrow sin^22x+\left(\frac{3}{2}sin2x+2\right)^2=1\left(VN\right)\)

29 tháng 7 2020

\(\text{c) }3cos^4x-4cos^2x\cdot sin^2x-sin^4x=0\)

Nhận thấy sinx=0 không là nghiệm pt.

Chia cả 2 vế cho sin4x ta được

\(pt\Leftrightarrow\frac{3cos^4x}{sin^4x}-\frac{4cos^2x}{sin^2x}-1=0\\ \Leftrightarrow3cot^4x-4cot^2x-1=0\\ \Leftrightarrow cot^2x=\frac{2+\sqrt{7}}{3}\\ \Leftrightarrow cotx=\pm\sqrt{\frac{2+\sqrt{7}}{3}}\\ \Leftrightarrow x=arccot\left(\pm\sqrt{\frac{2+\sqrt{7}}{3}}\right)+k2\pi\)

d) kiểm tra đề.

AH
Akai Haruma
Giáo viên
2 tháng 10 2018

Lời giải:

Áp dụng các công thức lượng giác:

\(1+\cos x+\cos 2x+\cos 3x\)

\(=(1+\cos 2x)+(\cos x+\cos 3x)\)

\(=2\cos ^2x+2\cos 2x\cos x\)

\(=2\cos x(\cos x+\cos 2x)=2\cos x(\cos x+\cos ^2x-\sin ^2x)\)

\(=2\cos x(\cos x+2\cos ^2x-1)\)

\(\Rightarrow \frac{1+\cos x+\cos 2x+\cos 3x}{2\cos ^2x+\cos x-1}=\frac{2\cos x(\cos x+2\cos ^2x-1)}{2\cos ^2x+\cos x-1}=2\cos x\)

Vậy \(2\cos x=\frac{2}{3}(3-\sqrt{3})\sin x\)

\(\Leftrightarrow \sqrt{3}\cos x=(\sqrt{3}-1)\sin x\)

\(\Rightarrow \tan x=\frac{\sin x}{\cos x}=\frac{\sqrt{3}}{\sqrt{3}-1}\Rightarrow x=k\pi +\arctan \frac{\sqrt{3}}{\sqrt{3}-1}\)

11 tháng 10 2018

dạ e cảm ơn

25 tháng 9 2017

tính 2(sinx+cosx )+sin2x+1=0? | Yahoo Hỏi & Đáp

11 tháng 10 2017

Giá mà tớ thấy câu hỏi này sớm hơn§3. Một số phương trình lượng giác thường gặp