K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2021

1.

\(\Leftrightarrow2cos2x+sinx-sin3x=0\)

\(\Leftrightarrow2cos2x-2cos2x.sinx=0\)

\(\Leftrightarrow2cos2x\left(1-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
5 tháng 10 2021

2.

\(cos^2x+\left(sin3x-1\right)\left(1-cos\left(\dfrac{\pi}{2}-x\right)\right)=0\)

\(\Leftrightarrow1-sin^2x+\left(sin3x-1\right)\left(1-sinx\right)=0\)

\(\Leftrightarrow\left(1-sinx\right)\left(1+sinx\right)+\left(sin3x-1\right)\left(1-sinx\right)=0\)

\(\Leftrightarrow\left(1-sinx\right)\left(1+sinx+sin3x-1\right)=0\)

\(\Leftrightarrow2\left(1-sinx\right)sin2x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sin2x=0\\cosx=0\end{matrix}\right.\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\dfrac{k\pi}{2}\)

NV
19 tháng 1 2021

\(\dfrac{1}{sin2k}=\dfrac{sink}{sink.sin2k}=\dfrac{\left(sin2k-k\right)}{sink.sin2k}=\dfrac{sin2k.cosk-cos2k.sink}{sink.sin2k}\)

\(=\dfrac{cosk}{sink}-\dfrac{cos2k}{sin2k}=cotk-cot2k\)

Do đó pt tương đương:

\(cot\dfrac{x}{2}-cotx+cotx-cot2x+...+cot2^{2017}x-cot^{2018}x=0\)

\(\Leftrightarrow cot\dfrac{x}{2}-cot2^{2018}x=0\)

\(\Leftrightarrow\dfrac{x}{2}=2^{2018}x+k\pi\)

\(\Leftrightarrow...\)

19 tháng 1 2021

@Nguyễn VIệt Lâm giúp em với

6 tháng 10 2016

câu 1:xét sinx=o

xét sinx khác 0

chia phương trình cho cos3x

ta được 1 phương trình mới:

4+3tanx-\(\frac{1}{sin^2x}\)-tan3x=0

<=>4+3tanx-(1+cot2x)-tan3x=0

<=>4+3tanx-1-\(\frac{1}{tan^2x}\)-tan3x=o

nhân cho tan2x ta được 1 phương trình bậc 5 với tanx

28 tháng 9 2019

NV
5 tháng 10 2020

1.

\(\Leftrightarrow2sin\frac{x}{2}cos\frac{x}{2}+\sqrt{3}cos\frac{x}{2}=0\)

\(\Leftrightarrow cos\frac{x}{2}\left(2sin\frac{x}{2}+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\frac{x}{2}=0\\sin\frac{x}{2}=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=-\frac{\pi}{3}+k2\pi\\\frac{x}{2}=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)

2.

\(\Leftrightarrow cosx=2cos^2\left(\frac{x}{2}-\frac{\pi}{6}\right)-1\)

\(\Leftrightarrow cosx=cos\left(x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x-\frac{\pi}{3}+k2\pi\left(vn\right)\\x=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{6}+k\pi\)

NV
5 tháng 10 2020

3.

\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow x-\frac{\pi}{3}=k\pi\)

\(\Leftrightarrow...\)

4.

\(1+\frac{1}{2}sin6x=sin^2x+cos^2x+2sinx.cosx\)

\(\Leftrightarrow\frac{1}{2}sin6x=sin2x\)

\(\Leftrightarrow sin6x-2sin2x=0\)

\(\Leftrightarrow3sin2x-4sin^32x-2sin2x=0\)

\(\Leftrightarrow sin2x-4sin^32x=0\)

\(\Leftrightarrow sin2x\left(1-4sin^22x\right)=0\)

\(\Leftrightarrow sin2x\left(2cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
8 tháng 8 2020

d.

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=0\)

\(\Leftrightarrow sin^2x-cos^2x=0\)

\(\Leftrightarrow-cos2x=0\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

e. Đề thiếu

f.

\(\Leftrightarrow sin2x=\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)\)

\(\Leftrightarrow sin2x=cos^2\frac{x}{2}-sin^2\frac{x}{2}\)

\(\Leftrightarrow sin2x=cosx\)

\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
8 tháng 8 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b.

\(\Leftrightarrow sin2x=1\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

c.

\(\Leftrightarrow2sin2x.cos2x=-1\)

\(\Leftrightarrow sin4x=-1\)

\(\Leftrightarrow4x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

15 tháng 6 2021

a1)\(\dfrac{sin110}{cos110}+\dfrac{cos20}{sin20}\)

\(=\dfrac{sin\left(180-70\right)}{cos\left(180-70\right)}+\dfrac{cos\left(90-70\right)}{sin\left(90-70\right)}\)

\(=\dfrac{sin70}{-cos70}+\dfrac{sin70}{cos70}=0\)

a2) \(sin^2x+sin^2\left(\dfrac{\pi}{3}-x\right)+sinx.sin\left(\dfrac{\pi}{3}-x\right)\)

\(=\dfrac{1}{2}\left(1-cos2x\right)+\dfrac{1}{2}\left[1-cos\left(\dfrac{2\pi}{3}-2x\right)\right]+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{3}\right)-cos\left(\dfrac{\pi}{3}\right)\right]\)

\(=\dfrac{1}{2}-\dfrac{1}{2}.cos2x+\dfrac{1}{2}-\dfrac{1}{2}.cos\left(\dfrac{2\pi}{3}-2x\right)+\dfrac{1}{2}.cos\left(2x-\dfrac{\pi}{3}\right)-\dfrac{1}{4}\)

\(=\dfrac{3}{4}-\dfrac{1}{2}\left[cos2x+cos\left(\dfrac{2\pi}{3}-2x\right)-cos\left(2x-\dfrac{\pi}{3}\right)\right]\)

\(=\dfrac{3}{4}-\dfrac{1}{2}\left[cos2x-2.sin\dfrac{\pi}{6}.sin\left(\dfrac{\pi-4x}{2}\right)\right]\)

\(=\dfrac{3}{4}-\dfrac{1}{2}\left(cos2x-cos2x\right)\)

\(=\dfrac{3}{4}\)

a3) \(sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)

\(=\dfrac{1-cos2x}{2}+\dfrac{1}{2}\left[cos\left(-2x\right)+cos\left(\dfrac{2\pi}{3}\right)\right]\)

\(=\dfrac{1-cos2x}{2}+\dfrac{cos2x}{2}-\dfrac{1}{4}\)

\(=\dfrac{1}{2}-\dfrac{1}{4}\)

\(=\dfrac{1}{4}\)

NV
25 tháng 10 2020

1.

\(\Leftrightarrow4sinx.cosx+3\left(sinx-cosx\right)=0\)

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)

Pt trở thành:

\(2\left(1-t^2\right)+3t=0\)

\(\Leftrightarrow-2t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=2\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow sinx-cosx=-\frac{1}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

NV
25 tháng 10 2020

2.

Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=1-t^2\end{matrix}\right.\)

Pt trở thành:

\(1-t^2-4t=4\)

\(\Leftrightarrow t^2+4t+3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sinx-cosx=-1\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{3\pi}{2}+k2\pi\end{matrix}\right.\)