Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(3\sqrt{5}=\sqrt{45}\) ; \(2\sqrt{6}=\sqrt{24}\) ; \(4\sqrt{2}=\sqrt{32}\)
Vì 24 < 29 < 32 < 45 nên \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)
Hay \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b. \(6\sqrt{2}=\sqrt{72}\) ; \(3\sqrt{7}=\sqrt{63}\) ; \(2\sqrt{14}=\sqrt{56}\)
Vì 38 < 56 < 63 < 72 nên \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)
Hay \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
Bài 1: Đưa thừa số ra ngoài dấu căn:
\(2\sqrt{225a^2}=2.15a=30a\)
Bài 2: Đưa thừa số vào trong dấu căn :
\(x\sqrt{\dfrac{-39}{x}}=\sqrt{x^2.\dfrac{-39}{x}}=\sqrt{-39x}\)
Bài 3: Sắp xếp theo thứ tự tăng dần :
a) \(2\sqrt{3}< 3\sqrt{2}< 2\sqrt{5}< 5\sqrt{2}\)
b) \(4\sqrt{2}< \sqrt{37}< 2\sqrt{15}< 3\sqrt{7}\)
c) \(6\sqrt{\dfrac{1}{3}}< \sqrt{27}< 2\sqrt{28}< 5\sqrt{7}\)
a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)
=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)
=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)
=-7
b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)
So sánh:
1) \(2\sqrt{27}\) và \(\sqrt{147}\)
+ \(2\sqrt{27}\) = \(6\sqrt{3}\)
+ \(\sqrt{147}\) = \(7\sqrt{3}\)
⇒ \(6\sqrt{3}\) < \(7\sqrt{3}\)
Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)
2) \(2\sqrt{15}\) và \(\sqrt{59}\)
+ \(2\sqrt{15}\) = \(\sqrt{60}\)
⇒ \(\sqrt{60}\) > \(\sqrt{59}\)
Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)
3) \(2\sqrt{2}-1\) và 2
\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)
So sánh: 3 và \(2\sqrt{2}\)
+ 3 = \(\sqrt{9}\)
+ \(2\sqrt{2}=\sqrt{8}\)
⇒ \(\sqrt{8}\) < \(\sqrt{9}\)
⇒ \(\sqrt{8}\) -1 < \(\sqrt{9}\) -1
⇒ \(2\sqrt{2}\) - 1 < 3 - 1
Vậy: \(2\sqrt{2}-1< 2\)
4) \(\frac{\sqrt{3}}{2}\) và 1
+ 1 = \(\frac{2}{2}\)
⇒ \(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)
Vậy: \(\frac{\sqrt{3}}{2}\) < 1
5) \(\frac{-\sqrt{10}}{2}\) và \(-2\sqrt{5}\)
+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)
⇒ \(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)
Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)
Ta có :
\(2\sqrt{3}=\sqrt{12}\)
\(5\sqrt{2}=\sqrt{50}\)
\(3\sqrt{2}=\sqrt{18}\)
\(2\sqrt{5}=\sqrt{20}\)
\(\Rightarrow\) \(\sqrt{12}< \sqrt{18}< \sqrt{20}< \sqrt{50}\)
Sắp xếp theo tt tăng dần : \(2\sqrt{3}< 3\sqrt{2}< 2\sqrt{5}< 5\sqrt{2}\)
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
a)\(2\sqrt{27}=\sqrt{4\cdot27}=\sqrt{108}< \sqrt{147}\)
b)\(-3\sqrt{5}=-\sqrt{9\cdot5}=-\sqrt{45}>-\sqrt{75}=-\sqrt{25\cdot3}=-5\sqrt{3}\)
c) ta có
\(21=\sqrt{21\cdot21}=\sqrt{441}\\ 2\sqrt{7}=\sqrt{28}\\ 15\sqrt{3}=\sqrt{\left(15\cdot15\right)\cdot3}=\sqrt{675}\\ -\sqrt{123}\)
=> thứ tự lần lượt là:
\(-\sqrt{123};2\sqrt{7};21;15\sqrt{3}\)
d)\(2\sqrt{15}=\sqrt{60}>\sqrt{59}\)
e)\(2\sqrt{2}=\sqrt{8}-1< \sqrt{9}-1=3-1=2\)
f)\(6=\sqrt{36}< \sqrt{41}\)
\(1.\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\)
\(2.\sqrt{3+\sqrt{5}}=\dfrac{\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+1}{\sqrt{2}}\)
\(3.\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}-\sqrt{3}\)
\(4.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(5.\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{4+2.2\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
\(6.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
a) \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
b) \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)
c) \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
d) \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\)
\(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\)
\(=\sqrt{5+\sqrt{2}}\)
e) \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
\(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\)
\(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)
\(=2+\sqrt{9-4\sqrt{5}}\)
\(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2+\sqrt{5}-2=\sqrt{5}\)
f) đề sai nhé:
\(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\)
g) \(\sqrt{16a^2b^8}=4b^4\left|a\right|\)
h) \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\)
a)
\(3\sqrt{5}=\sqrt{9.5}=\sqrt{45}\)
\(2\sqrt{6}=\sqrt{4.6}=\sqrt{24}\)
\(4\sqrt{2}=\sqrt{16.2}=\sqrt{32}\)
Do 24 < 29 < 32 < 45 => \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)
=> \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b)
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\\ 3\sqrt{8}=\sqrt{9.8}=\sqrt{72}\\ 2\sqrt{15}=\sqrt{4.15}=\sqrt{60}\)
Do 39 < 50 < 60 < 72 nên \(\sqrt{39}< \sqrt{50}< \sqrt{60}< \sqrt{72}\)
=> \(\sqrt{39}< 5\sqrt{2}< 2\sqrt{15}< 3\sqrt{8}\)
a: 3căn5=căn 45
2căn 6=căn 24
căn 29=căn 29
4căn2=căn 32
=>2căn6<căn29<4căn2<3căn5
b: 5căn 2=căn 50
căn 39=căn 39
3căn 8=căn 72
2căn 15=căn60
=>căn 39<5căn2<2căn15<3căn8