K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

a) theo thứ tự tăng dần: cos 870 ; sin 450 ; sin 520 ; cos 360 ; sin 780

b) theo thứ tự giảm dần : sin 780 ; cos 360 ; sin 520 ; sin 450 ; cos 870

31 tháng 7 2018

Có sin32048'=cos57012'

sin510=cos390

do đó cos28036' < cos390 < cos57012' < cos65017'

Sắp xếp theo thứ tự tăng dần là:cos28036'<sin510<sin32048'< cos65017'

30 tháng 7 2015

a) ta có tan 25 =sin25 phần cos25 và sin25=sin25 phần 1 suy ra sin25 phần cos25> sin25 phần 1 (vì cos25 <1) vậy tan25>sin25( điều 1)

b) ta có cot32= cos32 phần sin32 và cos32= sos32 phần 1 suy ra cos32 phần sin32>cos32 phần 1(vì sin32<1) vậy cot32>cos32

c) ta có tan45=sin45 phần cos45 và cos45= cos45= cos45 phần 1 suy ra sin45 phần cos45> cos45 phần 1(vì cos45<1) vậy tan45>cos45

d) ta có cot60=cos60 phần sin60 và sin30 =cos60 phần 1 suy ra cos60 phần sin60> cos60 phần 1 (vì sin60 <1) vậy cot60>sin30

17 tháng 9 2017

trong bài 14 (sgk -77) có yêu cầu chứng minh tan = sin phần cos đó bạn 

NM
7 tháng 8 2021

bài 1. 

\(cos88^0< sin7^0< sin29^0< cos58^0< cos50^0< sin64^0\)

b.\(cos38^0< sin56^0< cos31^0< sin61^0\)'

c.\(cot70^0< tan28^0< tan33^0< cot55^0< cot40^0\)

a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)

=1+1+1+1/2

=3,5

c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)

d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)

=1-1+1-1/2

=1/2

12 tháng 9 2015

Bài 1 :

\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)