K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

đặt tử là T ta có:

2T=2(1+2+22+23+...+22015)

2T=2+22+23+...+22016

2T-T=(2+22+23+...+22016)-(1+2+22+23+...+22015)

T=22016-1

thay T vào tử của S ta được:\(S=\frac{2^{2016}-1}{1-2^{2016}}=-1\)

3 tháng 5 2017

a)

Ta có : \(32^{13}=\left(2^5\right)^{13}=2^{65}\)

            \(64^{10}=\left(2^6\right)^{10}=2^{60}\)

Mà \(2^{65}>2^{60}\Rightarrow.....\)

b)

A = 2 + 2.2 + 2.2.2 + ... + 2.2.2.2....2

A = \(2+2^2+2^3+...+2^{100}\)

2A = \(2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(A=2^{101}-2\)

3 tháng 5 2017

1.

a) Ta có : 3213 = ( 25 ) 13 = 265

               6410 = ( 26 ) 10 = 260 

Vì 265 > 260 nên 3213 > 6410

b) A = 2 + 2.2 + 2.2.2 + 2.2.2.2 + ... + 2.2.2.2.2...2 ( 100 số 2 )

A = 2 . ( 1 + 2 + 2.2 + 2.2.2 + ... + 2.2.2.2...2 )

A = 2. ( 1 + 2 + 22 + 23 + ... + 299 )

gọi B là biểu thức trong ngoặc

Lại có : B = 1 + 2 + 22 + 23 + ... + 299

         2B = 2 + 22 + 23 + 24 + ... + 2100

         2B - B = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + ... + 299 )

         B = 2100 - 1

\(\Rightarrow\)A = 2 . ( 2100 - 1 )

\(\Rightarrow\)A = 2101 - 2

9 tháng 12 2019

Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013

              =22013(27+26+25+24+23+22+2+1)

             =22013.255

Vì 255\(⋮\)15 nên 22013.255\(⋮\)15

hay S\(⋮\)15

Vậy S\(⋮\)15.

9 tháng 10 2018

\(S=2^{2019}-2^{2018}-2^{2017}-...-2^2-2-1\)

   \(=2^{2019}-\left(1+2+2^2+...+2^{2017}+2^{2018}\right)\) (1)

Đặt \(Q=1+2+2^2+...+2^{2017}+2^{2018}\)

\(2Q=2+2^2+2^3+...+2^{2018}+2^{2019}\)

\(2Q-Q=2^{2019}-1\)

\(Q=2^{2019}-1\)(2) 

Từ (1) và (2), ta được:

\(S=2^{2019}-\left(2^{2019}-1\right)=1\)

     

bạn viết lại đề đc ko bạn:>,ko hỉu đề

23 tháng 2 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????

26 tháng 12 2017

Ta có:T=2+22+...+22015+22016

T có số số hạng là:\(\left(2016-1\right):1+1=2016\)(số hạng)\(⋮\) 3

\(\Rightarrow T=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(\Rightarrow T=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+...+2^{2013}\left(2+2^2+2^3\right)\)

\(\Rightarrow T=14+2^3.14+...+2^{2013}.14\)

\(\Rightarrow T=14.\left(2+2^3+...+2^{2013}\right)⋮14\)

Vậy \(T⋮14\)

(đpcm)

26 tháng 12 2017

Bạn An Thanh ơi!

Nếu mình giải là

Theo đề ta có:

T= 2+22+........+22015+22016

T=22016+22015+..........+22+2

2T=22017+22017+......+22017+22017

2T=22017.2016

T=22017.1008

Vì 22017chia hết cho 14 và 1008 chia hết cho 14 nên T chia hết cho 14

Làm vậy có đúng không bạn?

Bạn nhớ đóng góp ý kiến cho mình nha!vuieoeo

Chắc đề thế này! 

\(S=1+2+2^2+2^3+2^4+...+2^{2014}\)

\(2S=2+2^2+2^3+2^4+...+2^{2015}\)

\(2S-S=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)

\(\Rightarrow2S-S=S=2^{2015}-1< 2^{2015}\Rightarrow S< D\)