Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A= 1/1.3 + 1/3.5 + .....+ 1/5.7 +......+ 1/19.21
2.A = 2/1.3 + 2/3.5 + 2/5.7 +...+ 2/19.21
2.A= 1- 1/3+ 1/3- 1/5+ 1/5- 1/7+............+ 1/19 - 1/21
2.A= 1- 1/21
2.A = 20/21
A= 20/21 : 2
A = 10/21
=> D
A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)
A=\(\dfrac{227}{675}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{19\cdot21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{19\cdot21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\left(1-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{1}{2}\cdot\frac{20}{21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{10}{21}-\frac{x}{14}=\frac{2}{-7}\)
\(\frac{x}{14}=\frac{10}{21}-\frac{2}{-7}\)
\(\frac{x}{14}=\frac{16}{21}\)
\(\Rightarrow x\cdot=21=14\cdot16\)
\(\Rightarrow x\cdot21=224\)
\(\Rightarrow x=\frac{224}{21}\)
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
\(2.S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2019-2017}{2017.2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\)
=> \(S=\frac{1009}{2019}\)
Tính: S= 1/1.3 + 1/3.5 +1/5.7 + 1009/2019 .....+ 1/2017.2019
Trả lời:
1009/2019
Cố gắng lên (tự nhủ)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2S=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(S=\frac{1009}{2019}\)