Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/1.2+1/2.3+1/3.4+...+1/99.10
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
Giải:
Ta có: \(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}...+\dfrac{1}{99.100}\)
\(\Leftrightarrow S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow S=\dfrac{1}{1}-\dfrac{1}{100}\)
\(\Leftrightarrow S=1-\dfrac{1}{100}\)
\(\Leftrightarrow S=\dfrac{99}{100}\)
Vậy ...
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)
s=1.2+2.3+3.4+...+99.100
=>3s=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.3+2.3.(4-1)+...+99.100.(101-98)
=1.2.3-1.2.3+2.3.4-2.3.4+...-98.99.100+99.100.101
=99.100.101
=>s=99.100.101/3=333300
1. ta có :
\(3^2+4^2=5^{x-1}\)
\(25=5^{x-1}\)
\(5^2=5^{x-1}\)
=> x = 3
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3S = 99.100.101
=> S = 99.100.101/3
=> S = 333300
S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ......... + 99.100(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ........ + 99.100.101 - 98.99.100
=> 3S = (1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101) - (1.2.3 + 2.3.4 + .......... + 98.99.100)
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
a) S= 1+ 1/2 + 1/4 +1/8+ …+1/1024
½ S=1/2x1+1/2x1/2+1/2x1/4+1/2x1/8+… + 1/1024
=1/2+1/8+1/16+…+1/1024+1/2048-(1+1/2+1/4+1/8+…+1/1024)
S - ½ S=1-1/2048
=2047/2048
S=2047/2048:1/2
=1,999023438
b) Giải
Khoảng cách : 1
Số số hạng là :
(100-1):1+1=100(số)
Tổng các số là :
(100+1)x100:2=5050
Đáp số 5050
c) Giải
Khoảng cách : 1.1
Số số hạng là:
(99,100-1,2):1.1+1=90(số)
Tổng các số là :
(99,100+1,2)x90 :2=4513,5
Đáp số 4513,5
a) Mình có cách khác nha :
Ta có \(S=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{1024}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+......+\frac{1}{512}\)
\(\Rightarrow2S-S=2-\frac{1}{1024}\)
\(\Rightarrow S=\frac{2047}{1024}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
vì \(\frac{99}{100}< 1\)
nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}< 1\)
Vậy A<1
S = 1 + 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰⁰
2S = 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹⁰¹) - (1 + 2 + 2² + ... + 2¹⁰⁰)
= 2¹⁰¹ - 1
------------
S = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 - 1.2.3 + 2
3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102
= 100.101.102
S = 100 . 101 . 102 : 3
= 343400
------------
Q = 1² + 2² + 3² + ... + 100² + 101²
= 101.102.(2.101 + 1) : 6
= 348551