Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(Q=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\left(\sqrt{x}+3\right)}\)
b: Để Q=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)
=>-10căn x+4=căn x+3
=>-11 căn x=-1
=>x=1/121
So Sánh
a.\(\dfrac{1}{4}\sqrt{8}\) và \(\dfrac{2}{3}\sqrt{12}\)
Có:\(\dfrac{1}{4}\sqrt{8}\) và \(\dfrac{2}{3}\sqrt{12}\)
= \(\dfrac{1}{4}.2\sqrt{2}\) và \(\dfrac{2}{3}.2\sqrt{3}\)
=\(\dfrac{\sqrt{2}}{2}\)và \(\dfrac{4\sqrt{3}}{3}\)
=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)
b. \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\)và \(6\sqrt{\dfrac{1}{35}}\)
Có \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}\) và \(6\sqrt{\dfrac{1}{35}}\)
=\(\dfrac{5}{2}.\dfrac{\sqrt{6}}{6}\) và \(6.\dfrac{\sqrt{35}}{35}\)
=\(\dfrac{5\sqrt{6}}{12}\) và \(\dfrac{6\sqrt{35}}{35}\)
=> \(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{35}}\)
c. \(\dfrac{1}{6}\sqrt{18}\) và \(\dfrac{1}{2}\sqrt{2}\)
=\(\dfrac{1}{6}.3\sqrt{2}\) và \(\dfrac{1}{2}\sqrt{2}\)
=\(\dfrac{\sqrt{2}}{2}\) và \(\dfrac{\sqrt{2}}{2}\)
=> \(\dfrac{1}{6}\sqrt{18}=\dfrac{1}{2}\sqrt{2}\)
a,\(\dfrac{1}{4}\sqrt{8}=\dfrac{1}{\sqrt{2}}\)
\(\dfrac{2}{3}\sqrt{12}=\dfrac{4}{\sqrt{3}}\)
=> \(\dfrac{1}{4}\sqrt{8}< \dfrac{2}{3}\sqrt{12}\)
Bài 1:Với mọi n∈N*,ta có:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó :
A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Bài 2:
\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)
\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)
=10
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)
\(=\sqrt{121}-\sqrt{1}=11-1=10\)
Lại có: \(\dfrac{1}{\sqrt{k}}=\dfrac{2}{2\sqrt{k}}>\dfrac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{k}}>\dfrac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Áp dụng đánh giá trên vào B ta có:
\(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)
\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10\)
Suy ra \(A=10< B\Rightarrow A< B\)
Lời giải:
Ta thấy:
\(A-B=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{79}+\sqrt{80}}-\left(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}-\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(> \frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{77}+\sqrt{78}}>0\)
\(\Rightarrow A>B\)
TQ:\(S_n=\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}\)
Mà theo AM-GM:\(n+\left(n+1\right)\ge2\sqrt{n\left(n+1\right)}\)
\(\Rightarrow S_n\le\dfrac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Áp dụng:\(S< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{48}}-\dfrac{1}{\sqrt{49}}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{7}\right)=\dfrac{6}{14}=\dfrac{3}{7}\)
a)
<=> \(\dfrac{7}{4\cdot\sqrt{3}}và\dfrac{9}{4\cdot\sqrt{5}}\)
<=> \(\dfrac{7\cdot\sqrt{5}}{4\cdot\sqrt{15}}và\dfrac{9\cdot\sqrt{3}}{4\cdot\sqrt{15}}\)
<=>\(\sqrt{245}và\sqrt{243}\)
<=> \(\sqrt{245}>\sqrt{243}\)
=> \(\dfrac{7}{2}\cdot\sqrt{\dfrac{1}{12}}=\dfrac{9}{4}\cdot\sqrt{\dfrac{1}{5}}\)
a)
\(\dfrac{7}{2}\sqrt{\dfrac{1}{12}}=\dfrac{7}{2}\sqrt{\dfrac{12}{12^2}}=\dfrac{7}{2}.\dfrac{\sqrt{12}}{\sqrt{12^2}}=\dfrac{7}{2}.\dfrac{\sqrt{3.4}}{12}=\dfrac{7.2.\sqrt{3}}{2.12}=\dfrac{7\sqrt{3}}{12}=\dfrac{7\sqrt{3}.5}{12.5}=\dfrac{35\sqrt{3}}{60}\)
\(\dfrac{9}{4}\sqrt{\dfrac{1}{5}}=\dfrac{9}{4}\sqrt{\dfrac{5}{5^2}}=\dfrac{9}{4}.\dfrac{\sqrt{5}}{\sqrt{5^2}}=\dfrac{9.\sqrt{5}}{4.5}=\dfrac{9\sqrt{5}}{20}=\dfrac{9\sqrt{5}.3}{20.3}=\dfrac{27\sqrt{5}}{60}\)Ta có \(3675>3645\Leftrightarrow\sqrt{3675}>\sqrt{3645}\Leftrightarrow\sqrt{1225.3}>\sqrt{729.5}\Leftrightarrow35\sqrt{3}>27\sqrt{5}\Leftrightarrow\dfrac{35\sqrt{3}}{60}>\dfrac{27\sqrt{5}}{60}\)
Vậy \(\dfrac{7}{2}\sqrt{\dfrac{1}{12}}>\dfrac{9}{4}\sqrt{\dfrac{1}{5}}\)
b)
\(\sqrt{\dfrac{4}{27}}=\sqrt{\dfrac{4.3}{27.3}}=\dfrac{\sqrt{4.3}}{\sqrt{81}}=\dfrac{2\sqrt{3}}{9}=\dfrac{2\sqrt{3}.26}{9.26}=\dfrac{52\sqrt{3}}{234}\)
\(\sqrt{\dfrac{3}{26}}=\sqrt{\dfrac{3.26}{26^2}}=\dfrac{\sqrt{3.26}}{\sqrt{26^2}}=\dfrac{\sqrt{78}}{26}=\dfrac{9.\sqrt{78}}{26.9}=\dfrac{9\sqrt{78}}{234}\)
Ta có \(8112>6318\Leftrightarrow\sqrt{8112}>\sqrt{6318}\Leftrightarrow\sqrt{2704.3}>\sqrt{81.78}\Leftrightarrow52\sqrt{3}>9\sqrt{78}\Leftrightarrow\dfrac{52\sqrt{3}}{234}>\dfrac{9\sqrt{78}}{234}\)
Vậy \(\sqrt{\dfrac{4}{27}}>\sqrt{\dfrac{3}{26}}\)
Lời giải:
$S=\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+....+\frac{2021}{2^{2020}}$
$2S=2+\frac{2}{2^0}+\frac{3}{2^1}+...+\frac{2021}{2^{2019}}$
$\Rightarrow 2S-S=2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2019}}-\frac{2021}{2^{2020}}$
$\Rightarrow S=2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2019}}-\frac{2021}{2^{2020}}$
$2S=4+2+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{2018}}-\frac{2021}{2^{2019}}$
$\Rightarrow 2S-S=4-\frac{2022}{2^{2019}}$
$\Rightarrow S< 4$