Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này chúng tớ làm nhiều rùi
neu cau noi the thi thui
\(10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
Vì \(10^{12}-1>10^{11}+1\)
nên \(-\dfrac{9}{10^{12}-1}>-\dfrac{9}{10^{11}+1}\)
hay A>B
\(\left|x\right|< 3\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
chúc bạn học tốt
/x/<3\(\Rightarrow\left\{{}\begin{matrix}x< 3\\-x>-3\end{matrix}\right.\)
TH1:x<3\(\Rightarrow\)x{0;1;2}
Theo bài ra ta có:
\(\left(x+y\right)=3\left(x-y\right)=\dfrac{2x}{y}\)
Xét 2 vế đầu là x+y =3(x-y ); Ta có:
=> x+y = 3x - 3y
=> (x+y) - (3x - 3y) =0 hay 2x -4y =0;
=>4y -2x=0 => 2(2y - x) =0;
Vậy 2y - x=0 => 2y=x ..Thay vào ta được biểu thức mới:
\(\left(2y+y\right)=3\left(2y-y\right)=\dfrac{4y}{y}=4\)
=> 3y = 4 \(=>y=\dfrac{4}{3};x=\dfrac{4}{3}.2=\dfrac{8}{3}\)
Vậy x\(=\dfrac{8}{3}\); y\(=\dfrac{4}{3}\)
CHÚC BẠN HỌC TỐT .....
Nếu là z+x thì mik biết làm nè:
Đặt x-y=2011(1)
y-z=-2012(2)
z+x=2013(3)
Cộng (1);(2);(3) lại với nhau ta được :
2x=2012=>x=1006
Từ (1) => y=-1005
Từ (3) => z=1007
Số học sinh nam là:
\(36\cdot\dfrac{4}{9}=16\) (học sinh)
Số học sinh nữ là:
\(36-16=20\) (học sinh)
Vậy lớp 6a1 có 16 học sinh nam, 20 học sinh nữ.
Số học sinh nam của lớp là
36 .4/9 = 16 ( học sinh )
Số học sinh nữ là : 36 - 16 =20 ( h/s)
Bạn chỉ cần nỗ lực nhiều, trả lời nhanh nhất và đúng nhất, cách làm chi tiết nhất thì bạn sẽ được điểm thành tích thôi.
Chúc bạn học tốt !!!Phạm Thùy Dương
Doraemon bn cho mk hỏi nếu đc người khác chọn câu trả lời thì có đc điểm thành tích ko
\(S=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{17\cdot20}\\ =\dfrac{1}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{17\cdot20}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{20}\right)\\ =\dfrac{1}{3}\cdot\dfrac{9}{20}\\ =\dfrac{3}{20}\)
Giải:
Ta có:
\(S=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{17.20}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{17.20}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)\)
\(=\dfrac{1}{3}.\dfrac{9}{20}=\dfrac{3}{20}\)
Vậy \(S=\dfrac{3}{20}\)