Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1+2^5+2^{10}+2^{15}+...+2^{2015}\)
\(\Leftrightarrow32C=2^5+2^{10}+...+2^{2020}\)
=>\(31C=2^{2020}-1\)
hay \(C=\dfrac{2^{2020}-1}{31}\)
\(B=1+2+2^2+...+2^{2019}\)
=>\(2B=2+2^2+...+2^{2020}\)
=>\(B=2^{2020}-1\)
\(A=\dfrac{B}{C}=\dfrac{2^{2020}-1}{\dfrac{2^{2020}-1}{31}}=31\)
\(B=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}...\frac{2019^2}{2020^2-1}\)
\(=\frac{1^2}{\left(2-1\right)\left(2+1\right)}.\frac{3^2}{\left(4-1\right)\left(4+1\right)}...\frac{2019^2}{\left(2020-1\right)\left(2020+1\right)}\)
\(=\frac{1^2}{1.3}.\frac{3^2}{3.5}...\frac{2019^2}{2019.2021}=\frac{1}{2021}\)
A=\(\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right).\left(\frac{2}{3}-\frac{3}{2}+12\right)\)
A=\(\frac{6}{5}\).\(\frac{67}{6}\)=\(\frac{67}{5}\)
Hok tốt
\(A=\frac{\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right)}{\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)}\)
\(A=\frac{\left(\frac{15}{10}-\frac{4}{10}+\frac{1}{10}\right)}{\left(\frac{18}{12}-\frac{8}{12}+\frac{1}{12}\right)}\)
\(A=\frac{\frac{6}{5}}{\frac{11}{12}}=\frac{6}{5}:\frac{11}{12}=\frac{6}{5}\times\frac{12}{11}\)
\(A=\frac{72}{55}\)
\(B=\frac{1+2+2^2+2^3+...+2^{2019}}{1+2^5+2^{10}+2^{15}+...+2^{2015}}\)
\(B=\frac{2^2+2^3+...+2^{2019}}{2^5+2^{10}+2^{15}+...+2^{2015}}\)
\(\text{( Vì }1+2+2^2+2^3+...+2^{2019}\text{ Có số mũ bắt đầu từ }2\text{ là các số liên tiếp )}\) \(\Rightarrow\text{ Chúng bao gồm các số có chữ số tận cùng là }0\text{ hoặc }5\text{ vậy nên sẽ có một số số trùng nhau thì ta chỉ cần xóa những chữ số đó ở tử số và mẫu số là được .}\)