\(\left(\frac{x}{x^2-x-6}-\frac{x-1}{3x^2-4x-15}\right):\frac{x^4-2x^2+1}{3x^2+11...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

Chép đề đúng chưa bạn? 2 phân số đầu có ngoặc không vậy?

2 tháng 7 2019

Nguyễn Công Tỉnh đúng r bạn, mình sửa lại r

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t

các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

12 tháng 1 2017

làm tạm câu này vậy

a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)

\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)

\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)

\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)

\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)

\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)

Vậy...

12 tháng 1 2017

chuẩn

NV
10 tháng 7 2019

1/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)

\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)

2/ ĐKXĐ:...

Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)

3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)

4/ Bạn tự giải

22 tháng 3 2015

c) ĐKXĐ : \(x\ne0\)Đặt \(\frac{x}{3}-\frac{4}{x}=t\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=t^2+\frac{8}{3}\)

\(\Rightarrow3\left(\frac{x^2}{9}+\frac{16}{x^2}\right)=3t^2+8\Rightarrow\frac{x^2}{3}+\frac{48}{x^2}=3t^2+8\)

Pt trở thành : 3t2 - 10t + 8 = 0 => t = 2 ; t = 4/3

từ đó suy ra x

22 tháng 3 2015

đặt \(\sqrt{2x^2+4x+3}=t\left(t\ge0\right)\Rightarrow t^2=2x^2+4x+3\Rightarrow\frac{t^2-3}{2}=x^2+2x\)

khi đó pt đã cho trở thành: \(\frac{t^2-3}{2}+t=6\Leftrightarrow t^2-3+2t=12\Leftrightarrow t^2+2t-15=0\)

<=> t2 +5t - 3t - 15 = 0 <=> t.(t+5) - 3(t+5) = 0 => (t-3)(t+5) = 0 => t = 3 (thoả mãn) hoặc t = -5 (loại)

t = 3 => \(\sqrt{2x^2+4x+3}=3\Rightarrow2x^2+4x+3=9\Rightarrow2x^2+4x-6=0\)

=> x2 + 2x -4 = 0 

\(\Delta'=1-\left(-4\right)=5\)

=> \(x_1=-1+\sqrt{5};x_2=-1-\sqrt{5}\)