Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hai vế đều dương nên bình phương hai vế, ta được:
\(H^2=\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)^2\)
\(=x+2\sqrt{2x-4}+x-2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}\)
\(=2x+2\sqrt{x^2-4\left(2x-4\right)}=2x+2\sqrt{x^2-8x+16}\)
=2x + 2√ (x-4)^2 = 2x + 2|x-4|
Đến đây bạn tự làm tiếp nha (với x>2)
a)\(M=\sqrt{x+\sqrt{x^2-4}}\sqrt{x-\sqrt{x^2-4}}\)
=\(\sqrt{\left(x+\sqrt{x^2-4}\right)\left(x-\sqrt{x^2-4}\right)}\)
=\(\sqrt{x^2-\left(\sqrt{x^2-4}\right)^2}\)
=\(\sqrt{x^2-\left(x^2-4\right)}\)
=\(\sqrt{x^2-x^2+4}\)
=\(\sqrt{4}=2\)
b) vì M=2 nên giá trị của M không phụ thuộc vào giá trị của biến nên với
\(x=4+\sqrt{5}\)
thì giá trị của M vẫn là 4
\(M\sqrt{x}=\sqrt{\left(x+2\right)+\left(x-2\right)+2\sqrt{\left(x-2\right)\left(x+2\right)}}+\sqrt{\left(x+2\right)+\left(x-2\right)-2\sqrt{\left(x-2\right)\left(x+2\right)}}\)
\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}\)
\(=\sqrt{x+2}+\sqrt{x-2}+\sqrt{x+2}-\sqrt{x-2}=2\sqrt{x+2}\)
\(\Rightarrow M=\sqrt{2}\sqrt{x+2}\)
- a.\(A=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(\sqrt{2}A=\sqrt{12+8\sqrt{2}}+\sqrt{12-8\sqrt{2}}\)
\(=\sqrt{\left(2\sqrt{2}+2\right)^2}+\sqrt{\left(2\sqrt{2}-2\right)^2}\)
\(=2\sqrt{2}+2+2\sqrt{2}-2=4\sqrt{2}\)
\(A=\frac{4\sqrt{2}}{\sqrt{2}}=4\)
Bài 1:
a) \(\sqrt{6+4\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}+\left|2-\sqrt{2}\right|\)
\(=2+\sqrt{2}+2-\sqrt{2}\)( Vì \(2>\sqrt{2}\))
\(=4\)
b) Hình như sai đầu bài
Bài 2
Ta có \(VP=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left|\sqrt{3}-1\right|\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2=VT\)
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a,\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\) (vi x>=8)
=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b, \(\sqrt{x-1+2\sqrt{x\left(x-1\right)}+x}+\sqrt{x-1-2\sqrt{x\left(x-1\right)}+x}\)
=\(\sqrt{x-1}+\sqrt{x}+\left|\sqrt{x-1}-\sqrt{x}\right|\)
=\(\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\) =\(2\sqrt{x}\)
c,d sai dau bai hay sao y