\(\frac{3^6.2^{21}}{175^9.7^3}\)

b)\(\frac{3^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^9\cdot7^3}=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^{12}}\)

b: \(=\dfrac{3^{10}\cdot3^7\cdot2^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\dfrac{3^{17}}{5^{17}}\)

15 tháng 9 2019

Bài 1 :                                                                        Bài giải

\(\frac{28^{15}\cdot3^{17}}{84^{16}}=\frac{\left(2^2\cdot7\right)^{15}\cdot3^{17}}{\left(2^2\cdot3\cdot7\right)^{16}}=\frac{2^{30}\cdot7^{15}\cdot3^{17}}{2^{32}\cdot3^{16}\cdot7^{16}}=\frac{3}{2^2\cdot7}=\frac{3}{4\cdot7}=\frac{3}{28}\)

Bài 2 :                                                              Bài giải

\(\frac{3^6\cdot21^{12}}{175^9\cdot7^3}=\frac{3^6\cdot\left(3\cdot7\right)^{12}}{\left(5^2\cdot7\right)^9\cdot7^3}=\frac{3^6\cdot3^{12}\cdot7^{12}}{5^{18}\cdot7^9\cdot7^3}=\frac{3^{18}\cdot7^{12}}{5^{18}\cdot7^{12}}=\frac{3^{18}}{5^{18}}\)

\(\frac{3^{10}\cdot6^7\cdot4}{10^9\cdot5^8}=\frac{3^{10}\cdot\left(2\cdot3\right)^7\cdot2^2}{\left(2\cdot5\right)^9\cdot5^8}=\frac{3^{10}\cdot2^7\cdot3^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\frac{3^{17}\cdot2^9}{2^9\cdot5^{17}}=\frac{3^{17}}{5^{17}}\)

Ta có : \(3^{17}\cdot5^{18}=3^{17}\cdot5^{17}\cdot5=\left(3\cdot5\right)^{17}\cdot5=15^{17}\cdot5\)

\(3^{18}\cdot5^{17}=3\cdot3^{17}\cdot5^{17}=3\cdot\left(3\cdot5\right)^{17}=3\cdot15^{17}\)

\(\text{ Vì }5\cdot15^{17}>3\cdot15^{17}\text{ }\Rightarrow\text{ }3^{17}\cdot5^{18}>3^{18}\cdot5^{17}\text{ }\Rightarrow\text{ }\frac{3^{18}}{5^{18}}< \frac{3^{17}}{5^{17}}\)

15 tháng 9 2019

cảm ơn nha

22 tháng 8 2016

Đặt: \(A=\frac{3^6.21^{12}}{175^9.7^3}=\frac{3^{18}.7^{12}}{7^{12}.25^9}=\frac{3^{18}}{5^{18}}=\left(\frac{3}{5}\right)^{18}\)

\(B=\frac{3^{10}.6^7.4}{10^9.5^8}=\frac{3^{10}.2^7.3^7.2^2}{2^9.5^9.5^8}=\frac{3^{17}.2^9}{2^9.5^{17}}=\left(\frac{3}{5}\right)^{17}\)

Vì: \(\left(\frac{3}{5}\right)^{18}< \left(\frac{3}{5}\right)^{17}\Rightarrow A< B\)

22 tháng 8 2016

cảm ơn bạn nhiều nha!

2 tháng 12 2017

Ta có: \(A=\dfrac{3^6.21^{12}}{175^9.7^3}=\dfrac{3^6.3^{12}.7^{12}}{5^{18}.7^9.7^3}=\dfrac{3^{18}.7^{12}}{5^{18}.7^{12}}=\dfrac{3^{18}}{5^{18}}=\left(\dfrac{3}{5}\right)^{18}\)

\(B=\dfrac{3^{10}.6^7.4}{10^9.5^8}=\dfrac{3^{10}.2^7.3^7.2^2}{2^9.5^9.5^8}=\dfrac{3^{17}.2^9}{2^9.5^{17}}=\dfrac{3^{17}}{5^{17}}=\left(\dfrac{3}{5}\right)^{17}\)

\(\left(\dfrac{3}{5}\right)^{18}< \left(\dfrac{3}{5}\right)^{17}\Rightarrow A< B\)

Vậy A < B

22 tháng 9 2017

Đặt\(A=\dfrac{3^6.21^{12}}{175^9.7^3}=\dfrac{3^6.3^{12}.7^{12}}{175^9.7^3}=\dfrac{3^{18}.7^{12}}{\left(5^2\right)^9.7^9.7^3}=\dfrac{3^{18}.7^{12}}{5^{18}.7^{12}}=\dfrac{3^{18}}{5^{18}}=\left(\dfrac{3}{5}\right)^{18}\)

Đặt \(B=\dfrac{3^{10}.6^7.4}{10^9.5^8}=\dfrac{3^{10}.3^7.2^7.2^2}{2^9.5^9.5^8}=\dfrac{3^{17}.2^9}{2^9.5^{17}}=\dfrac{3^{17}}{5^{17}}=\left(\dfrac{3}{5}\right)^{17}\)

\(\left(\dfrac{3}{5}\right)^{18}>\left(\dfrac{3}{5}\right)^{17}\Leftrightarrow A>B\)

\(\Rightarrow\dfrac{3^6.21^{12}}{175^9.7^3}>\dfrac{3^{10}.6^7.4}{10^9.5^8}\)

27 tháng 11 2017

4) \(3^{n+2}+3^n=270\)

\(\Rightarrow3^n.3^2+3^n=270\)

\(\Rightarrow3^n.\left(3^2+1\right)=270\)

\(\Rightarrow3^n.\left(9+1\right)=270\)

\(\Rightarrow3^n.10=270\)

\(\Rightarrow3^n=270:10\)

\(\Rightarrow3^n=27\)

\(\Rightarrow3^n=3^3\)

\(\Rightarrow n=3\)

Vậy \(n=3\)

13 tháng 7 2019

a)\(=\frac{3^7}{2^2.3^4}=\frac{3^3}{2^2}=\frac{27}{4}\)

b)\(=\frac{2^{20}+2^{12}}{2^{10}+2^{18}}=\frac{2^{12}\left(2^8+1\right)}{2^{10}\left(1+2^8\right)}=\frac{2^{12}}{2^{10}}=2^2=4\)

17 tháng 7 2016

Cũng khuya rồi , mình làm câu 1 thôi nhé !
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}=\frac{2.5^{22}-9.5^{21}}{\left(5^2\right)^{10}}\)

\(\frac{5^{21}.\left(2.5-9\right)}{5^{20}}=5.\left(10-9\right)=5\)
 

10 tháng 8 2016

\(A=\frac{4^6.9^5+69.120}{8^4.3^{12}+6^{11}}=\frac{2^{12}.3^{10}+2^3.3^2.115}{2^{12}.3^{12}+\left(2.3\right)^{11}}=\frac{3^2.2^3\left(115+2^9.3^8\right)}{6^{11}\left(6+1\right)}=\frac{115+2^9.3^8}{6^8.3.7}\)

\(B=\frac{10^4+5.10^3+5^4}{25}=\frac{\left(10^2\right)^2+2.5^2.10^2+\left(5^2\right)^2}{25}=\frac{\left(10^2+5^2\right)^2}{25}=\frac{125^2}{25}=\frac{25.625}{25}=625\)

\(C=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{4^{10}.2^{10}+4^{10}}{4^4.4^7+4^4.2^4}=\frac{4^{10}\left(2^{10}+1\right)}{4^4.2^4\left(2^{10}+1\right)}=\frac{4^6}{2^4}=256\)