\(\dfrac{3^6.21^{12}}{175^9.7^3}\) và B =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

Ta có: \(A=\dfrac{3^6.21^{12}}{175^9.7^3}=\dfrac{3^6.3^{12}.7^{12}}{5^{18}.7^9.7^3}=\dfrac{3^{18}.7^{12}}{5^{18}.7^{12}}=\dfrac{3^{18}}{5^{18}}=\left(\dfrac{3}{5}\right)^{18}\)

\(B=\dfrac{3^{10}.6^7.4}{10^9.5^8}=\dfrac{3^{10}.2^7.3^7.2^2}{2^9.5^9.5^8}=\dfrac{3^{17}.2^9}{2^9.5^{17}}=\dfrac{3^{17}}{5^{17}}=\left(\dfrac{3}{5}\right)^{17}\)

\(\left(\dfrac{3}{5}\right)^{18}< \left(\dfrac{3}{5}\right)^{17}\Rightarrow A< B\)

Vậy A < B

22 tháng 9 2017

Đặt\(A=\dfrac{3^6.21^{12}}{175^9.7^3}=\dfrac{3^6.3^{12}.7^{12}}{175^9.7^3}=\dfrac{3^{18}.7^{12}}{\left(5^2\right)^9.7^9.7^3}=\dfrac{3^{18}.7^{12}}{5^{18}.7^{12}}=\dfrac{3^{18}}{5^{18}}=\left(\dfrac{3}{5}\right)^{18}\)

Đặt \(B=\dfrac{3^{10}.6^7.4}{10^9.5^8}=\dfrac{3^{10}.3^7.2^7.2^2}{2^9.5^9.5^8}=\dfrac{3^{17}.2^9}{2^9.5^{17}}=\dfrac{3^{17}}{5^{17}}=\left(\dfrac{3}{5}\right)^{17}\)

\(\left(\dfrac{3}{5}\right)^{18}>\left(\dfrac{3}{5}\right)^{17}\Leftrightarrow A>B\)

\(\Rightarrow\dfrac{3^6.21^{12}}{175^9.7^3}>\dfrac{3^{10}.6^7.4}{10^9.5^8}\)

22 tháng 8 2016

Đặt: \(A=\frac{3^6.21^{12}}{175^9.7^3}=\frac{3^{18}.7^{12}}{7^{12}.25^9}=\frac{3^{18}}{5^{18}}=\left(\frac{3}{5}\right)^{18}\)

\(B=\frac{3^{10}.6^7.4}{10^9.5^8}=\frac{3^{10}.2^7.3^7.2^2}{2^9.5^9.5^8}=\frac{3^{17}.2^9}{2^9.5^{17}}=\left(\frac{3}{5}\right)^{17}\)

Vì: \(\left(\frac{3}{5}\right)^{18}< \left(\frac{3}{5}\right)^{17}\Rightarrow A< B\)

22 tháng 8 2016

cảm ơn bạn nhiều nha!

27 tháng 11 2017

4) \(3^{n+2}+3^n=270\)

\(\Rightarrow3^n.3^2+3^n=270\)

\(\Rightarrow3^n.\left(3^2+1\right)=270\)

\(\Rightarrow3^n.\left(9+1\right)=270\)

\(\Rightarrow3^n.10=270\)

\(\Rightarrow3^n=270:10\)

\(\Rightarrow3^n=27\)

\(\Rightarrow3^n=3^3\)

\(\Rightarrow n=3\)

Vậy \(n=3\)

15 tháng 9 2019

Bài 1 :                                                                        Bài giải

\(\frac{28^{15}\cdot3^{17}}{84^{16}}=\frac{\left(2^2\cdot7\right)^{15}\cdot3^{17}}{\left(2^2\cdot3\cdot7\right)^{16}}=\frac{2^{30}\cdot7^{15}\cdot3^{17}}{2^{32}\cdot3^{16}\cdot7^{16}}=\frac{3}{2^2\cdot7}=\frac{3}{4\cdot7}=\frac{3}{28}\)

Bài 2 :                                                              Bài giải

\(\frac{3^6\cdot21^{12}}{175^9\cdot7^3}=\frac{3^6\cdot\left(3\cdot7\right)^{12}}{\left(5^2\cdot7\right)^9\cdot7^3}=\frac{3^6\cdot3^{12}\cdot7^{12}}{5^{18}\cdot7^9\cdot7^3}=\frac{3^{18}\cdot7^{12}}{5^{18}\cdot7^{12}}=\frac{3^{18}}{5^{18}}\)

\(\frac{3^{10}\cdot6^7\cdot4}{10^9\cdot5^8}=\frac{3^{10}\cdot\left(2\cdot3\right)^7\cdot2^2}{\left(2\cdot5\right)^9\cdot5^8}=\frac{3^{10}\cdot2^7\cdot3^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\frac{3^{17}\cdot2^9}{2^9\cdot5^{17}}=\frac{3^{17}}{5^{17}}\)

Ta có : \(3^{17}\cdot5^{18}=3^{17}\cdot5^{17}\cdot5=\left(3\cdot5\right)^{17}\cdot5=15^{17}\cdot5\)

\(3^{18}\cdot5^{17}=3\cdot3^{17}\cdot5^{17}=3\cdot\left(3\cdot5\right)^{17}=3\cdot15^{17}\)

\(\text{ Vì }5\cdot15^{17}>3\cdot15^{17}\text{ }\Rightarrow\text{ }3^{17}\cdot5^{18}>3^{18}\cdot5^{17}\text{ }\Rightarrow\text{ }\frac{3^{18}}{5^{18}}< \frac{3^{17}}{5^{17}}\)

15 tháng 9 2019

cảm ơn nha

a: \(=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^9\cdot7^3}=\dfrac{3^6\cdot2^{21}}{5^{18}\cdot7^{12}}\)

b: \(=\dfrac{3^{10}\cdot3^7\cdot2^7\cdot2^2}{2^9\cdot5^9\cdot5^8}=\dfrac{3^{17}}{5^{17}}\)

3 tháng 10 2018

a, \(A=\dfrac{10^{15}+1}{10^6+1}>1\);\(B=\dfrac{10^6+1}{10^{17}+1}< 1\)

\(A>B\)

b, \(D=\dfrac{2^{2007}+3}{2^{2006}-1}=\dfrac{2^{2008}+6}{2^{2007}-2}\)

Ta có : \(\dfrac{2^{2008}-3}{2^{2007}-1}< \dfrac{2^{2008}-3}{2^{2007}-2}< \dfrac{2^{2008}+6}{2^{2007}-2}\)

\(C< D\)

c, \(M=\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)

\(N=\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)

\(\dfrac{4}{8^4}< \dfrac{4}{8^3}\)

\(M< N\)

4 tháng 10 2018
Lũy thừa của một số hữu tỉ (tiếp theo...)Lũy thừa của một số hữu tỉ (tiếp theo...) Lũy thừa của một số hữu tỉ (tiếp theo...)
28 tháng 12 2017

Bài 5: GTNN chứ nhỉ?

Với mọi gt của \(x;y\in R\) ta có:

\(x^2+3\left|y-2\right|+1\ge1\)

Hay \(A\ge1\) với mọi gt của \(x;y\in R\)

Dấu "=" sảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy..................

Bài 6: GTLN chứ?

Với mọi giá trị của \(x\in R\) ta có:

\(-\left(2x-1\right)^2\le0\Rightarrow-5-\left(2x-1\right)^2\le-5\)

Hay \(B\le5\) với mọi giá trị của \(x\in R\)

Dấu "=" sảy ra khi và chỉ khi \(x=\dfrac{1}{2}\)

Vậy...................

28 tháng 12 2017

Bài 4 :

\(a,3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}.26=3^{12}.2.13⋮\left(đpcm\right)\)

\(b,8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)

Bài 5 :

\(A=1^2+3^2+6^2+9^2+.............+39^2\)

\(=1+3^2+\left(6^2+9^2+.........+39^2\right)\)

\(=10+3^2\left(2^2+3^2+.........+13^2\right)\)

\(=10+3^2.818\)

\(=10+9.818\)

\(=7372\)

a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)

\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)

\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)

b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)

\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)

\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)