K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

\(a.\left(2-\sqrt{3}+\sqrt{5}\right)\left(2-\sqrt{5}+\sqrt{3}\right)\)

\(=4-\left(\sqrt{3}-\sqrt{5}\right)^2\)

\(=4-3+2\sqrt{15}-5\)

\(=2\sqrt{15}-4\)

\(b.2\sqrt{3}\left(\sqrt{3}-3\right)-\left(3\sqrt{3}-1\right)^2\)

\(=6-6\sqrt{3}-27+6\sqrt{3}-1\)

\(=-22\)

ok

 

Câu 1: 

\(A=\sqrt{2-\sqrt{3}}-\dfrac{1}{\sqrt{2-\sqrt{3}}}\)

\(=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)

3 tháng 9 2018

\(A=\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)

\(=\sqrt{\sqrt{3}-\sqrt{3-\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)

\(=\sqrt{\sqrt{3}-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)vì \(2\sqrt{3}>1\Rightarrow2\sqrt{3}-1>0\)

\(=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{\sqrt{3}-\left(\sqrt{3}-1\right)}\)vì\(\sqrt{3}>1\Rightarrow\sqrt{3}-1>0\)

\(=\sqrt{1}=1\)

1 tháng 4 2019

A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):(\sqrt{x}-1), với x\geq 0,x\not =1.

a)Rút gọn A;

1 tháng 4 2019

Đề đây ạ https://nttuan.org/2010/05/09/topic-68/

25 tháng 7 2017

Bài 1 tìm điều kiện của x để biểu thức sau có nghĩa :

a) \sqrt{4-3x}

ĐKXĐ : 4 - 3x \(\ge0\) <=> -3x \(\ge-4\Rightarrow x\le\dfrac{4}{3}\)

Vậy ĐKXĐ của x là x \(\le\dfrac{4}{3}\) để biểu thức \(\sqrt{4-3x}\) được xác định

b) \sqrt{\frac{-2}{1+2x}}

ĐKXĐ : \(-\dfrac{2}{1+2x}\ge0\) . Vì -2 < 0 nên => 1 + 2x < 0 <=> 2x < -1 => x < - \(\dfrac{1}{2}\)

Vậy ĐKXĐ của x là \(x< -\dfrac{1}{2}\)

c) \(\sqrt{7x}-\sqrt{2x-3}\)

Vì 7 > 0 nên => x > 0

ĐKXĐ : 2x - 3 \(\ge0\) <=> 2x \(\ge3=>x\ge\dfrac{3}{2}\)

Vậy ĐKXĐ của x là x > 0 và x \(\ge\dfrac{3}{2}\)

d) \sqrt{\frac{5}{2x+5}}+\frac{x-1}{x+2}

Ta có ĐKXĐ : \(\sqrt{\dfrac{5}{2x+5}}\) \(\ge0\) mà vì 5 > 0 nên => 2x + 5 > 0 <=> 2x > - 5 => x > \(-\dfrac{5}{2}\)

Ta có ĐKXĐ : \(\dfrac{x-1}{x+2}\ge0\) ; x + 2 > 0 => x \(\ne-2\)

Ta có BXD :

x x-1 x+2 -2 1 0 0 0 - - + - + + + + - (x-1)/(x+2)

=> \(x< -2\) hoặc x \(\ge1\)

Vậy ĐKXĐ của x là : x > - \(\dfrac{5}{2}\) ; x < -2 hoặc x \(\ge1\)

25 tháng 7 2017

mình sửa lại câu b là bỏ đi dấu "=" nhé!

Câu d) ĐK:\(\left\{{}\begin{matrix}\dfrac{5}{2x+5}\ge0\\x+2\ne0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x+5>0\\x\ne-2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x\ne-2\end{matrix}\right.\)

18 tháng 2 2020

Đề hoàn chỉnh đây ạ: Với n > 0, chứng minh rằng \(2\left(\sqrt{n+1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{n}}< 2\sqrt{n}-1\)

Xin lỗi vì sự bất cẩn này!