K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

\(A=\dfrac{1}{\sqrt{7-\sqrt{24}}+1}-\dfrac{1}{\sqrt{7+\sqrt{24}}+1}\)

\(=\dfrac{\sqrt{7-2\sqrt{6}}-1}{7-2\sqrt{6}-1}-\dfrac{\sqrt{7+2\sqrt{6}}-1}{7+2\sqrt{6}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{6}-1\right)^2}-1}{6-2\sqrt{6}}-\dfrac{\sqrt{\left(\sqrt{6}+1\right)^2}-1}{6+2\sqrt{6}}\)

\(=\dfrac{\sqrt{6}-2}{\sqrt{6}\left(\sqrt{6}-2\right)}-\dfrac{\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)

\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}+2}=\dfrac{\sqrt{6}+2-\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)

\(=\dfrac{2}{\sqrt{12}\left(\sqrt{3}+\sqrt{2}\right)}=\dfrac{2\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{3}\left(3-2\right)}=\dfrac{3-\sqrt{6}}{3}\)

5 tháng 7 2017

\(5-2\sqrt{6}=\left(\sqrt{2}\right)^2-2\times\sqrt{2}\times\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

\(7+2\sqrt{10}=\left(\sqrt{2}\right)^2+2\times\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{2}+\sqrt{5}\right)^2\)

\(8-2\sqrt{15}=\left(\sqrt{5}\right)^3-2\times\sqrt{5}\times\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(B=\dfrac{2}{\sqrt{8-2\sqrt{15}}}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{3}{\sqrt{7+2\sqrt{10}}}\)

\(=\dfrac{2}{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{3}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\dfrac{2\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\dfrac{1\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{2}=0\)

10 tháng 5 2017

\(A=-\sqrt{2}-\sqrt{1}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+....-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}\)

\(A=\sqrt{9}-\sqrt{1}=3-1=2\)

a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)

c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)

\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)

\(P=\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}\)

\(=\dfrac{\sqrt{1}+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-\dfrac{\sqrt{4}+\sqrt{5}}{4-5}+\dfrac{\sqrt{5}+\sqrt{6}}{5-6}-\dfrac{\sqrt{6}+\sqrt{7}}{6-7}+\dfrac{\sqrt{7}+\sqrt{8}}{7-8}-\dfrac{\sqrt{8}+\sqrt{9}}{8-9}\)

\(=-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-\sqrt{5}-\sqrt{6}+\sqrt{6}+\sqrt{7}-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}\)

\(=-1+\sqrt{9}=-1+3=2\)

Học tốt !!

5 tháng 8 2018

\(\dfrac{1}{\sqrt{k}-\sqrt{k+1}}=\dfrac{\sqrt{k}+\sqrt{k+1}}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}\\ =\dfrac{\sqrt{k}+\sqrt{k+1}}{k-k-1}=-\left(\sqrt{k}+\sqrt{k+1}\right)\\ \Rightarrow P=\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{8}-\sqrt{9}}\\ =-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...+\left(\sqrt{8}+\sqrt{9}\right)\\ =-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{8}+\sqrt{9}\\ =-\sqrt{1}+\sqrt{9}=-1+3=4\)

25 tháng 7 2018

\(a.\dfrac{\sqrt{7}-5}{2}-\dfrac{6}{\sqrt{7}-2}+\dfrac{1}{3+\sqrt{7}}+\dfrac{3}{5+2\sqrt{7}}=\dfrac{\sqrt{7}-5}{2}+\dfrac{3-\sqrt{7}}{2}+\dfrac{6\sqrt{7}-15}{3}-\dfrac{6\sqrt{7}+12}{3}=-10\)

\(b.\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(6-2\sqrt{5}\right)\sqrt{5+2\sqrt{5}+1}=\left(\sqrt{5}+1\right)^2\left(6-2\sqrt{5}\right)=\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)=36-20=16\)

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được. a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\) bài 2: tính giá trị các biểu thức sau: a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b)...
Đọc tiếp

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)

d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)

bài 2: tính giá trị các biểu thức sau:

a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)

bài 3: thực hiện phép tính.

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)

c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

bài 4: thực hiện các phép tính sau.

a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)

c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)

bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)

b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)

bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

2
7 tháng 8 2018

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

7 tháng 8 2018

tớ nghĩ tớ giải đc 1-2 bài gì đó nhưng tớ ko bít bấm can lm sao giải cho cậu đc

16 tháng 10 2018

2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)

4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)

19 tháng 10 2022

1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)

3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)

\(=\sqrt{5}-2-3-\sqrt{5}=-5\)

4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)

5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)

6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)

8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)

\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)

\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)

26 tháng 7 2018

\(1.\text{ }\dfrac{1}{\sqrt{k}-\sqrt{k+1}}=\dfrac{\left(\sqrt{k}+\sqrt{k+1}\right)}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k}-\sqrt{k+1}\right)}\\ =-\left(\sqrt{k}+\sqrt{k+1}\right)\\ \Rightarrow\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{8}-\sqrt{9}}\\ =-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...+\left(\sqrt{8}+\sqrt{9}\right)\\ =-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{8}+\sqrt{9}\\ \\ =\sqrt{9}-\sqrt{1}=2\)

\(2.\text{ }\dfrac{1}{\left(k+1\right)\sqrt{k}+\sqrt{k+1}k}=\dfrac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\\ =\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\dfrac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\\ =\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\\ \Rightarrow\text{ }\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{7}}\\ =\text{ }\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{7}}\\ \text{ }1-\dfrac{1}{\sqrt{7}}\)

26 tháng 7 2018

1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}=\dfrac{1+\sqrt{2}}{1-2}-\dfrac{\sqrt{2}+\sqrt{3}}{2-3}+\dfrac{\sqrt{3}+\sqrt{4}}{3-4}-\dfrac{\sqrt{4}+\sqrt{5}}{4-5}+\dfrac{\sqrt{5}+\sqrt{6}}{5-6}-\dfrac{\sqrt{6}+\sqrt{7}}{6-7}+\dfrac{\sqrt{7}+\sqrt{8}}{7-8}-\dfrac{\sqrt{8}+\sqrt{9}}{8-9}=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-\sqrt{5}-\sqrt{6}+\sqrt{6}+\sqrt{7}-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}=\sqrt{9}-1=3-1=2\)

6 tháng 8 2018

\(1.\dfrac{6}{1-\sqrt{3}}-\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}=\dfrac{6}{1-\sqrt{3}}-\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=\dfrac{6}{1-\sqrt{3}}-3=\dfrac{3+3\sqrt{3}}{1-\sqrt{3}}\) \(2.\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}=\dfrac{2\sqrt{3}-6}{2\sqrt{2}-2\sqrt{6}}-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}=\dfrac{2\sqrt{3}\left(1-\sqrt{3}\right)}{2\sqrt{2}\left(1-\sqrt{3}\right)}-\sqrt{3}-1=\dfrac{\sqrt{3}}{\sqrt{2}}-\sqrt{3}-1=\dfrac{\sqrt{3}-\sqrt{6}-\sqrt{2}}{\sqrt{2}}\) \(3.\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}=\left[\dfrac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\dfrac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right].\left(\sqrt{7}-\sqrt{5}\right)=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-2\) \(4.\dfrac{\left(\sqrt{2}+1\right)^2-4\sqrt{2}}{\sqrt{2}-1}.\left(\sqrt{2}+1\right)=\dfrac{\left(2-2\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\sqrt{2}-1}=\dfrac{\left(\sqrt{2}-1\right)^2\left(\sqrt{2}+1\right)}{\sqrt{2}-1}=1\)

7 tháng 8 2018

Thank kiu yeu