Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(a+3\right)^2\left(a^2-3a+9\right)-\left(a-3\right)\left(a^2+3a+9\right)\)
\(A=\left(a^3+3^3\right)-\left(a^3-3^3\right)\)
\(A=a^3+3^3-a^3+3^3\)
\(A=3^3+3^3=54\)
\(\left(a+3\right)\left(a^2-3a+9\right)-\left(a-3\right)\left(a^2+3a+9\right)\)
\(=a^3+27-\left(a^3-27\right)\)
\(=a^3+27-a^3+27\)
\(=54\)
(a4 - 3a2 + 9).(a2 + 3) - (3 + a2)3
= a6 + 27 - 27 - 9a4 - 27a2 - a6
= -9a4 - 27a2
\(P=\frac{1}{a^2-a}+\frac{1}{a^2-3a+2}+\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}\)
\(=\frac{1}{a.\left(a-1\right)}+\frac{1}{\left(a-1\right).\left(a-2\right)}+\frac{1}{\left(a-2\right).\left(a-3\right)}+\frac{1}{\left(a-3\right).\left(a-4\right)}+\frac{1}{\left(a-4\right).\left(a-5\right)}\)
a) ĐKXĐ: \(a\ne0;1;2;3;4;5;6\)
b) \(P=\frac{1}{a-1}-\frac{1}{a}+\frac{1}{a-2}-\frac{1}{a-1}+\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}\)
\(A=\frac{1}{a-5}-\frac{1}{a}=\frac{a-\left(a-5\right)}{a.\left(a-5\right)}=\frac{5}{a.\left(a-5\right)}\)
c) \(a^3-a^2+2=0\)
\(\Leftrightarrow a^3+a^2-2a^2-2a+2a+2=0\)
\(\Leftrightarrow a^2.\left(a+1\right)-2a.\left(a+1\right)+2.\left(a+1\right)=0\)
\(\Leftrightarrow\left(a+1\right).\left(a^2-2a+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+1=0\\a^2-2a+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-1\\\left(a-1\right)^2=-1\left(loai\right)\end{cases}}}\)
Thay a=-1 vào P
\(P=\frac{5}{a.\left(a-5\right)}=\frac{5}{-1.\left(-1-5\right)}=\frac{5}{6}\)
Vì \(b>a>0\Rightarrow P=\frac{a-b}{a+b}< 0\)
Ta có : \(P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4}{16}\)
\(\Rightarrow\orbr{\begin{cases}P=-\frac{1}{2}\\P=\frac{1}{2}\end{cases}}\) Mà P < 0 nên \(P=-\frac{1}{2}\)
Vậy \(P=\frac{a-b}{a+b}=-\frac{1}{2}\)
\(A=9+3a+3a^2+a^3\)
\(=\left(a+3\right)^3-18\)
\(=3,5^3-18=24,875\)
Hình như sai r bạn