K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2021

M = (x + 3)(x2 - 3x + 9) - (x3 + 54 - x) với x = 27

  = (x^3+27)-(x3 + 54 - x)

  =x^3+27-x3 - 54 + x

  =27-54+x

  =-27+x

thay x=27 vào biểu thức trên ta có 

-27+x=-27+27=0

vậy M=0

Ta có: \(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(=x^3+27-x^3-54+x\)

\(=x-27\)

Thay x=27 vào biểu thức M=x-27, ta được:

M=27-27=0

Vậy: Khi x=27 thì M=0

27 tháng 11 2019

b. Câu hỏi của Phạm Thị Thùy Linh - Toán lớp 8 - Học toán với OnlineMath

1 tháng 1 2022

Answer:

\(M=\left(\frac{x}{x-3}+\frac{3x^2+3}{9-x^2}+\frac{2x}{x+3}\right):\frac{x+1}{3-x}\)

ĐKXĐ: 

\(x-3\ne0\)

\(9-x^2\ne0\)

\(x+3\ne0\)

\(x+1\ne0\)

(Ý này trình bày trong vở bạn xếp vào vào cái ngoặc "và" nhé!)

\(\Leftrightarrow\hept{\begin{cases}x\ne\pm3\\x\ne-1\end{cases}}\)

\(=\frac{-x\left(3+x\right)+3x^2+3+2x\left(3-x\right)}{\left(3-x\right)\left(3+x\right)}.\frac{\left(3-x\right)}{x+1}\)

\(=\frac{9x+3}{\left(3+x\right)\left(x+1\right)}\)

\(=\frac{3}{x+1}\)

Có: \(x^2+x-6=0\)

\(\Leftrightarrow x^2+6x-x-6=0\)

\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}\) (Thoả mãn)

Trường hợp 1: \(x=1\Leftrightarrow M=\frac{3}{1+1}=\frac{3}{2}\)

Trường hợp 2: \(x=-6\Leftrightarrow M=\frac{3}{-6+1}=\frac{-3}{5}\)

Để cho biểu thức M nguyên thì \(\frac{3}{x+1}\inℤ\)

\(\Rightarrow x+1\inƯ\left(3\right)\)

\(\Rightarrow\orbr{\begin{cases}x+1=1\\x+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\) (Thoả mãn)

22 tháng 2 2022

`Answer:`

`a)`

`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`

`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`

`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`

`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`

`=>A=-2x^2+28x-6`

`b)`

`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`

`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`

`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`

`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`

Thay `x=-7` vào ta được:

`B=10(-7)^2-2(-7)^3-7(-7)-6`

`=>B=10.49-2(-343)+49-6`

`=>B=490+686+49-6`

`=>B=1219`

1 tháng 7 2016

\(x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)

Thay x=5,ta có: \(\left(x-3\right)^3=\left(5-3\right)^2=2^3=8\)

Vậy...............

24 tháng 8 2017

\(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)

\(=x^3+3^3-x^3-54\)

\(=27-54\)

\(=-27\)

4 tháng 1 2018

a) (x+3)(x2-3x+9)-(54+x3)

= x3-3x2+9x+3x2-9x+27-54+x3

= -27

14 tháng 8 2020

Bài làm:

1) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-2\)

\(=\left(x-3\right)\left(x^2-6x+9-x^2-3x-9\right)-2\)

\(=-9x\left(x-3\right)-2\)

\(=27x-9x^2-2\)

2) \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=\left(x-1\right)\left(x^2-2x+1-x^2-x-1+3x\right)\)

\(=\left(x-1\right).0=0\)

=> đpcm

3) \(\frac{68^3-52^3}{16}-68.52\)

\(=\frac{\left(68-52\right)\left(68^2+68.52+52^2\right)}{16}-68.52\)

\(=\frac{16\left(4624+68.52+2704\right)}{16}-68.52\)

\(=7328+68.52-68.52=7328\)

5 tháng 11 2018

\(<=> 9x^2-6x+1+(2x+1)^2+2(3x-1)(2x-1)\)

\(<=> 9x^2-6x+1+4x^2+4x+1+(6x-2)(2x-1)\)

 \(<=> 9x^2-6x+1+4x^2+4x+1+12x^2-6x-4x+2\) 

 \(<=> 25x^2-12x+4\)

5 tháng 11 2018

có bạn nào có thể giúp mình giải câu b và d được không ạ mình cần gấp

24 tháng 3 2020

1) (2x^2 + 1)(x^2 - 2x - 1)

= 2x^4 - 4x^3 - 2x^2 + x^2 - 2x - 1

= 2x^4 - 4x^3 - x^2 - 2x - 1

2) (x^2 - x^4)/(x^2 - 1 + 1)

= (x^2.(1 - x^2))/(x^2 - 1 + 1)

= (x^2.(1 + x)(1 - x))/x^2

= (1 + x)(1 - x)

3) (3x + y)^3 + x^3 - 3x^2 + 3x + 1

Thay x = 1,1; y = -0,7 vào biểu thức, ta có:

= [3.1,1 + (-0,7)]^3 + 1,1^3 - 3.1,1^2 + 3.1,1 + 1

= 19,577