Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
Điều kiện xác định : \(0\le x\ne1\)
- \(H=\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{\left(x-1\right)-x}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=-2\sqrt{x-1}+x=\left(x-1-2\sqrt{x-1}+1\right)=\left(\sqrt{x-1}-1\right)^2\)
- Với \(x=\frac{53}{9-2\sqrt{3}}\) tính H kết quả rất lẻ.
- H = 16 \(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=16\Leftrightarrow\left|\sqrt{x-1}-1\right|=4\)
\(\Leftrightarrow\sqrt{x-1}-1=4\) (Vì \(\sqrt{x-1}-1\ge-1>-4\))
\(\Leftrightarrow x=26\)
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(H=\frac{2x^2+2x}{x^2-1}+\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow H=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow H=\frac{2x}{x-1}+\frac{1}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow H=\frac{2x+\sqrt{x}-1-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow H=\frac{2x-2}{x-1}\)
\(\Leftrightarrow H=2\)
b) Để \(\sqrt{x}< H\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow x< 4\)
Mà \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0\le x< 1\\1< x< 4\end{cases}}\)
p/s : vì đề bài không yêu cầu \(x\)nguyên nên mình làm như vậy !
a) \(A=\frac{3-\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}=\sqrt{3}-1\)
b) \(B=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{5}+1}=\frac{\sqrt{5}+1}{\sqrt{5}+1}=1\)
c) \(C=\frac{2\sqrt{2}+\sqrt{6}}{4+\sqrt{12}}=\frac{2\sqrt{2}+\sqrt{6}}{4+2\sqrt{3}}=\frac{\left(2\sqrt{2}+\sqrt{6}\right)\left(4-2\sqrt{3}\right)}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\frac{2\sqrt{2}}{4}=\frac{\sqrt{2}}{2}\)
d) \(D=\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{5+2\sqrt{6}}\left(\sqrt{2}-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=-\sqrt{5+2\sqrt{6}}\left(\sqrt{2}-\sqrt{3}\right)\)
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
Bài làm:
Ta có:
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(D=\frac{1}{\sqrt{\left(h-1\right)+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{\left(h-1\right)-2\sqrt{h-1}+1}}\)
\(D=\frac{1}{\sqrt{\left(\sqrt{h-1}+1\right)^2}}+\frac{1}{\sqrt{\left(\sqrt{h-1}-1\right)^2}}\)
\(D=\frac{1}{\left|\sqrt{h-1}+1\right|}+\frac{1}{\left|\sqrt{h-1}-1\right|}\)
Tại h = 3 thì giá trị của D là:
\(D=\frac{1}{\left|\sqrt{3-1}+1\right|}+\frac{1}{\left|\sqrt{3-1}-1\right|}\)
\(D=\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{2}-1}=\frac{\sqrt{2}-1+\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{2\sqrt{2}}{2-1}=2\sqrt{2}\)