K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

\(A=4\left(x+2\right)-\left(2x+1\right)\left(2x-1\right)\)

\(A=4x+8-4x^2+1\)

\(A=-\left(4x^2-4x+4\right)+13\)

\(A=-\left(2x+2\right)^2+13\)

Vì \(-\left(2x+2\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x+2\right)^2+13\le13\forall x\)

\(\Rightarrow A_{max}=13\)khi và chỉ khi \(-\left(2x+2\right)^2=0\Rightarrow x=-1\)

1 tháng 7 2018

1/

a,\(A=x-x^2=-x^2+x=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra <=>x=1/2

Vậy Amax=1/4 khi x=1/2

b, \(B=2x-2x^2-5=-2x^2+2x-5\)

\(\Rightarrow2B=-4x^2+4x-10=-\left(4x^2-4x+1\right)-9=-\left(2x-1\right)^2-9\)

Vì \(-\left(2x-1\right)^2\le0\Rightarrow2B=-\left(2x-1\right)^2-9\le-9\Rightarrow B\le\frac{-9}{2}\)

Dấu "=" xảy ra <=>x=1/2

Vậy Bmax=-9/2 khi x=1/2

2/

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

26 tháng 11 2018

a, \(M=\frac{3\left(x^2+1\right)}{\left(x^4+x^2\right)+\left(2x^3+2x\right)+\left(6x^2+6x\right)}=\frac{3\left(x^2+1\right)}{x^2\left(x^2+1\right)+2x\left(x^2+1\right)+6\left(x^2+1\right)}=\frac{3\left(x^2+1\right)}{\left(x^2+2x+6\right)\left(x^2+1\right)}=\frac{3}{x^2+2x+6}\)

b, ta có: \(M=\frac{3}{x^2+2x+6}=\frac{3}{\left(x^2+2x+1\right)+5}=\frac{3}{\left(x+1\right)^2+5}\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+5\ge5\Rightarrow\frac{1}{\left(x+1\right)^2+5}\le\frac{1}{5}\Rightarrow M=\frac{3}{\left(x+1\right)^2+5}\le\frac{3}{5}\)

Dấu "=" xảy ra <=>x+1=0 <=> x=-1

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

30 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

\(C=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)

2 tháng 10 2020

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)

\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)

\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)

\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)

\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)

b) \(18A=1\)

<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))

<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)

<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32

<=> 18x2 - 72x + 90 = x3 + 6x2 - 32

<=> x3 + 6x2 - 32 - 18x+ 72x - 90 = 0

<=> x3 - 12x2 + 72x - 122 = 0

Rồi đến đây chịu á :) 

2 tháng 10 2020

Ý lộn == là \(\frac{x^2-2x}{x+4}\)ạ ==

10 tháng 1 2023

1)

\(ĐKXĐ:x\ne-1\)

\(\dfrac{x^2+2x+1}{x+1}\\ =\dfrac{\left(x+1\right)^2}{x+1}\\ =x+1\)

2)

ĐKXĐ x khác 0 và x khác 3

\(\dfrac{x^2-6x+9}{x\left(x-3\right)}\\ =\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}\\ =\dfrac{x-3}{x}\)

3)

ĐKXĐ: x khác 0 và x khác -2

\(\dfrac{x^2-4}{2x\left(x+2\right)}\\ =\dfrac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)}\\ =\dfrac{x-2}{2x}\)

4)

DKXĐ: x khác 0 và x khác 2

\(\dfrac{x^2-2x}{5x^2-10x}\\ =\dfrac{x\left(x-2\right)}{5x\left(x-2\right)}\\ =\dfrac{1}{5}\)

10 tháng 1 2023

`1)` Biểu thức xác định `<=>x+1 \ne 0<=>x \ne -1`

`[x^2+2x+1]/[x+1]=[(x+1)^2]/[x+1]=x+1`

`2)` Bth xác định `<=>x(x-3) \ne 0<=>{(x \ne 0),(x \ne 3):}`

`[x^2-6x+9]/[x(x-3)]=[(x-3)^]/[x(x-3)]=[x-3]/x`

`3)` Bth xác định `<=>2x(x+2) \ne 0<=>{(x \ne 0),(x \ne -2):}`

`[x^2-4]/[2x(x+2)]=[(x-2)(x+2)]/[2x(x+2)]=[x-2]/[2x]`

`4)` Bth xác định `<=>5x^2-10x \ne 0<=>5x(x-2) \ne 0<=>{(x \ne 0),(x \ne 2):}`

`[x^2-2x]/[5x^2-10x]=[x(x-2)]/[5x(x-2)]=1/5`

18 tháng 6 2018

ĐKXĐ  x khac -1\(A=\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2+x-x-1}{x^3+x^2+x^2+x+x+1}=\frac{x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)}{x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)}=\frac{\left(x+1\right)\left(x^2+x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{x^2+x-1}{x^2+x+1}\)

\(ta.coA=\frac{x^2+x-1}{x^2+x+1}=\frac{x^2+x+1-2}{x^2+x+1}=1-\frac{2}{x^2+x+1}\)

Để A \(\in Z\Leftrightarrow\frac{2}{x^2+x+1}\in Z\Rightarrow x^2+x+1\inƯ\left(2\right)\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\in\left\{\pm1;\pm2\right\}\)

giải ra ta được \(x=0,x=-1\)(t/m)