Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)
\(=1+\sqrt{2}\)
2) Ta có: \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)
\(=\sqrt{108}-\sqrt{36\cdot\frac{4}{3}}+\sqrt{75\cdot\frac{9}{25}}\)
\(=\sqrt{108}-\sqrt{48}+\sqrt{27}\)
\(=\sqrt{3}\left(6-4+3\right)\)
\(=5\sqrt{3}\)
3) Sửa đề: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)
Ta có: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)
\(=\sqrt{2}\cdot\sqrt{4}\cdot\sqrt{3}-10\sqrt{4}\cdot\sqrt{3}+16\cdot\sqrt{4}\cdot\sqrt{3}\)
\(=\sqrt{2}\cdot\sqrt{12}-10\sqrt{12}+16\sqrt{12}\)
\(=\sqrt{12}\left(\sqrt{2}-10+16\right)\)
\(=2\sqrt{3}\left(\sqrt{2}-6\right)\)
\(=2\sqrt{6}-12\sqrt{3}\)
4) Ta có: \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{12}}{6}-\frac{2\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)
\(=\frac{6\left(2-\sqrt{3}\right)+2\sqrt{3}-6+2\sqrt{3}}{6}\)
\(=\frac{12-6\sqrt{3}+2\sqrt{3}-6+2\sqrt{3}}{6}\)
\(=\frac{6-2\sqrt{3}}{6}\)
\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2\sqrt{3}\cdot\sqrt{3}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}}\)
5) Ta có: \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
\(=\frac{\sqrt{3}\left(2+5+3\right)}{\sqrt{15}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)
6) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
\(=\sqrt{48\cdot\frac{1}{4}}-\sqrt{75\cdot4}-\sqrt{3}+5\sqrt{\frac{4}{3}}\)
\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{25\cdot\frac{4}{3}}\)
\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{\frac{100}{3}}\)
\(=\sqrt{3}\left(2-10-1+\frac{10}{3}\right)\)
\(=-\frac{17\sqrt{3}}{3}=-\frac{17}{\sqrt{3}}\)
+) Ta có: \(2\sqrt{75}-4\sqrt{27}+3\sqrt{12}\)
\(=2\sqrt{25}.\sqrt{3}-4\sqrt{9}.\sqrt{3}+3\sqrt{4}.\sqrt{3}\)
\(=10.\sqrt{3}-12.\sqrt{3}+6.\sqrt{3}\)
\(=4\sqrt{3}\approx6,9282\)
+) Ta có:\(\sqrt{x+6\sqrt{x-9}}\)
\(=\sqrt{x-9+6\sqrt{x-9}+9}\)
\(=\sqrt{\left(\sqrt{x-9}-3\right)^2}\)
\(=\left|\sqrt{x-9}-3\right|\)
\(\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{2-\sqrt{3}}=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{5-3}+\frac{2+\sqrt{3}}{4-3}=\sqrt{5}-\sqrt{3}+2+\sqrt{3}=\sqrt{5}+2\)
a)\(\)https://www.cymath.com/answer?q=2sqrt(27)-6sqrt(4%2F3)%2B3%2F5sqrt(75)
\(M=2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}=2\sqrt{3^2.3}-6\sqrt{\frac{2^2.3}{3^2}}+\frac{3}{5}\sqrt{5^2.3}=.\)
\(=6\sqrt{3}-4\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
\(P=\frac{2}{x-1}\sqrt{\frac{x^2-2x+1}{4x^2}}.Với...0< x< 1\Leftrightarrow\) \(P=\frac{2}{x-1}\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{(x-1)}.\frac{\left(1-x\right)}{2x}=\frac{-1}{x}.\)
a) \(\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7\left(\sqrt{3}+\sqrt{5}\right)}}=\) \(\frac{\sqrt{2}}{\sqrt{7}}\)
b ) \(\frac{15\sqrt{2}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}=\frac{3\left(5\sqrt{2}+3\sqrt{3}\right)}{3\left(\sqrt{3}+\sqrt{5}\right)}\)\(=\frac{5\sqrt{2}+3\sqrt{3}}{\sqrt{3}+\sqrt{5}}\)
c)\(\frac{\sqrt{2}-\sqrt{6}+\sqrt{3}-\sqrt{9}+\sqrt{4}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)+\sqrt{3}\left(1-\sqrt{3}\right)+\sqrt{4}\left(1-\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)\(=\frac{\left(1-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)
d) \(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)
\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\frac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
mik chỉnh lại đề
\(D=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)
\(=\frac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}=\frac{2}{3}\)
Bài 1:
a) Ta có: \(\sqrt{243}-\frac{1}{2}\sqrt{12}-2\sqrt{75}+\sqrt{27}\)
\(=\sqrt{3}\cdot9-\frac{1}{2}\cdot\sqrt{3}\cdot2-2\cdot\sqrt{3}\cdot5+\sqrt{3}\cdot3\)
\(=\sqrt{3}\left(9-1-10+3\right)\)
\(=\sqrt{3}\cdot1=\sqrt{3}\)
b) Ta có: \(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{5}{1+\sqrt{6}}-6\sqrt{\frac{1}{6}}\)
\(=\frac{\left(2\sqrt{3}-3\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\cdot\left(\sqrt{3}+\sqrt{2}\right)}+\frac{5\cdot\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\sqrt{36\cdot\frac{1}{6}}\)
\(=-\sqrt{6}+\frac{5\left(\sqrt{6}-1\right)}{5}-\sqrt{6}\)
\(=-2\sqrt{6}+\sqrt{6}-1\)
\(=-\sqrt{6}-1\)
Bài 2: Rút gọn
Ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
\(\sqrt{75}-3\sqrt{27}-6\sqrt{\frac{1}{3}}+2\sqrt{\frac{4}{3}}\)
=\(\sqrt{25}\sqrt{3}-3\sqrt{9}\sqrt{3}-6\sqrt{\frac{1}{3}}+2\sqrt{4}\sqrt{\frac{1}{3}}\)
=\(5\sqrt{3}-9\sqrt{3}-6\sqrt{\frac{1}{3}}+4\sqrt{\frac{1}{3}}\)
=\(-4\sqrt{3}-2\sqrt{\frac{1}{3}}\)
=\(-4\sqrt{3}-\frac{2}{\sqrt{3}}\)
=\(-4\sqrt{3}-\frac{2\sqrt{3}}{3}\)
=\(\frac{-12\sqrt{3}}{3}-\frac{2\sqrt{3}}{3}=\frac{-14\sqrt{3}}{3}\)
\(\sqrt{75}-3\sqrt{27}-6\sqrt{\frac{1}{3}}+2\sqrt{\frac{4}{3}}=\sqrt{3.25}-9\sqrt{3}-2\sqrt{3}+\frac{4\sqrt{3}}{3}=-4\sqrt{3}-2\sqrt{3}+\frac{4\sqrt{3}}{3}=-6\sqrt{3}+\frac{4\sqrt{3}}{3}=-\sqrt{\frac{14\sqrt{3}}{3}}\)