Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)
2. \(\sqrt{12-6\sqrt{3}}+\sqrt{21-12\sqrt{3}}=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-3\right)^2}\\ =3-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}\)
3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(3+\sqrt{6}\right)^2}\\ =2\sqrt{6}-3+3+\sqrt{6}=3\sqrt{6}\)
1.\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{2}\right)=2\sqrt{2}\)
2. \(\sqrt{12-6\sqrt{3}+\sqrt{21-12\sqrt{3}}}=\sqrt{12-6\sqrt{3}+\sqrt{\left(3-2\sqrt{3}\right)^2}}\)
\(=\sqrt{12-6\sqrt{3}+2\sqrt{3}-3}=\sqrt{9-4\sqrt{3}}\)
3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(\sqrt{6}-3\right)^2}\)
\(=2\sqrt{6}-3+3-\sqrt{6}=\sqrt{6}\)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
= \(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(2-\sqrt{3}+\sqrt{3}-1\) = \(1\)
b) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(3-\sqrt{6}+2\sqrt{6}-3\) = \(\sqrt{6}\)
c) \(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)
= \(\dfrac{15\sqrt{200}}{\sqrt{10}}-\dfrac{3\sqrt{450}}{\sqrt{10}}+\dfrac{2\sqrt{50}}{\sqrt{10}}\)
= \(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\)
= \(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\) = \(23\sqrt{5}\)
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}=2-\sqrt{3}+\sqrt{3-2\sqrt{3}+1}\left(\text{vì }2>\sqrt{3}\right)\)
\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}=2-\sqrt{3}+\sqrt{3}-1\left(\text{vì }\sqrt{3}>1\right)\)
\(=1\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{9-2.3\sqrt{6}+6}+\sqrt{\left(2\sqrt{6}\right)^2-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}=3-\sqrt{6}+2\sqrt{6}-3\left(\text{vì }3>\sqrt{6};2\sqrt{6}>3\right)\)
\(=\sqrt{6}\)
a/
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-1\)
\(=1\)
b/
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(\sqrt{24}-3\right)^2}\)
\(=3-\sqrt{6}+\sqrt{24}-3\)
\(=-\sqrt{6}+2\sqrt{6}=\sqrt{6}\)
tick cho mình nha
\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-2.3.\sqrt{6}}+\sqrt{33-2.6\sqrt{6}}\)
\(=\sqrt{3^2-2.3.\sqrt{6}+\sqrt{6^2}}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left(3-\sqrt{6}\right)-\left(2\sqrt{6}-3\right)\)
\(=3-\sqrt{6}-2\sqrt{6}+3\)
\(=6-3\sqrt{6}\)
Ko vt lại đề nha bn:
\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-2.3.\sqrt{6}}+\sqrt{33-2.6\sqrt{6}}\)
\(=\sqrt{3^2-2.3.\sqrt{6}+\sqrt{6^2}}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left(3-\sqrt{6}\right)-\left(2\sqrt{6}-3\right)\)
\(=3-\sqrt{6}-2\sqrt{6}+3\)
\(=6-3\sqrt{6}\)
Rất vui vì giúp đc bn !!!
a) \(\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{4-2\sqrt{3}}}{2}=\frac{\sqrt{3-2\sqrt{3}+1}}{2}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}\)
\(=\frac{\left|\sqrt{3}-1\right|}{2}=\frac{\sqrt{3}-1}{2}\)
b) \(\sqrt{8}\cdot\sqrt{3-\sqrt{5}}=\sqrt{4}\cdot\sqrt{6-2\sqrt{5}}=2\sqrt{5-2\sqrt{5}+1}=2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\cdot\left|\sqrt{5}-1\right|=2\left(\sqrt{5}-1\right)=2\sqrt{5}-2\)
a) \(\sqrt{33-12\sqrt{6}}+\sqrt{15+6\sqrt{6}}=\sqrt{24-2.2\sqrt{6}.3+9}+\sqrt{6+2.\sqrt{6}.3+9}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(\sqrt{6}+3\right)^2}=\left|2\sqrt{6}-3\right|+\left|\sqrt{6}+3\right|=2\sqrt{6}-3+\sqrt{6}+3=3\sqrt{6}\)
b) \(\dfrac{\sqrt{99}}{\sqrt{11}}+\dfrac{\sqrt{28}}{\sqrt{7}}-\sqrt{\sqrt{81}}=\sqrt{\dfrac{99}{11}}+\sqrt{\dfrac{28}{7}}-\sqrt{9}=\sqrt{9}+\sqrt{4}-\sqrt{9}=\sqrt{4}=2\)
a) \(\sqrt{33-12\sqrt{6}}\) + \(\sqrt{15+6\sqrt{6}}\)
= \(\sqrt{9-2.3.2\sqrt{6}+24}\)+\(\sqrt{9+2.3\sqrt{6}+6}\)
= \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)+\(\sqrt{\left(3+\sqrt{6}\right)^2}\)
=\(\left|3-2\sqrt{6}\right|+\left|3+\sqrt{6}\right|\)
=\(2\sqrt{6}-3+3+\sqrt{6}\)
=\(\sqrt{6}\)
b)\(\dfrac{\sqrt{99}}{\sqrt{11}}\)+\(\dfrac{\sqrt{28}}{\sqrt{7}}\)\(-\sqrt{\sqrt{81}}\)
= \(\sqrt{\dfrac{99}{11}}+\sqrt{\dfrac{28}{7}}-3\)
=\(\sqrt{9}+\sqrt{4}-3\)
= 3+2-3
= 2
Câu 2:
\(C=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Câu 3;
\(D=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)
\(\sqrt{3^2-2.3.\sqrt{6}+6}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2.\sqrt{6}\right)^2}\)
= \(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2.\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|+\left|3-2\sqrt{6}\right|=3-\sqrt{6}-3+2\sqrt{6}=\sqrt{6}\)