Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= sin6x+cos6x+3sin2x.cos2x(sin2x +cos2x) =(sin2x +cos2x)3 = 1
= (sin2x )3 + (cos2x)3 + 3sin2x. cos2x = (sin2x + cos2x).(sin4x - sin2x.cos2x + cos4x) + 3sin2x. cos2x
= sin4x + 2sin2x.cos2x + cos4x = (sin2x + cos2x)2 = 12 = 1
\(=\left(sin^2x+cos^2x\right)^3-3sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2xcos^2x+sin^2x+cos^2x\)
\(=1+1=2\)
A = (tan + cot)2 - (tan - cot)2 = 2tan×2cot = 4
B = sin6 + cos6 + 3sin2 + cos2
= (sin2 + cos2)(sin4 - sin2 cos2 + cos4) 3sin2 + cos2
= (sin2 + cos2)2 - 3sin2 cos2 + 3sin2 + cos2
= 3sin2 (1 - cos2) + 1 + cos2
= 3sin4 + 1 + cos2
Có thể câu B bạn chép sai đề. Đề đúng là
B = sin6 + cos6 + 3sin2 cos2
= (sin2 + cos2)(sin4 - sin2 cos2 + cos4) 3sin2 cos2
= (sin2 + cos2)2 - 3sin2 cos2 + 3sin2 cos2 = 1
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
\(sin^6x+cos^6x+3\cdot sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
\(=1^3-3\cdot sin^2x\cdot cos^2x+3\cdot sin^2x\cdot cos^2x\)
=1
\(sin^6x+cos^6x+3sin^2x.cos^2x=\left(sin^2x\right)^3+\left(cos^2x\right)^3+3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)\left[\left(sin^2x\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2\right]+3sin^2x.cos^2x\)
\(=1.\left[\left(sin^2\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2\right]+3sin^2x.cos^2x\)
\(=\left(sin^2x\right)^2-sin^2x.cos^2x+\left(cos^2x\right)^2+3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2=1^2=1\)