Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.A=\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x+y\right)\sqrt{3}}{2}=\dfrac{\sqrt{3}}{x-y}\) ( x # y )
\(b.\dfrac{1}{2x-1}.\sqrt{5a^4\left(1-4x+4a^2\right)}=\dfrac{1}{2a-1}.\left(2a-1\right)a^2\sqrt{5}=a^2\sqrt{5}\) ( a # \(\dfrac{1}{2}\) )
3) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{4x-20}=4\)
\(\Leftrightarrow4x-20=16\)
\(\Leftrightarrow4x=36\)
\(\Leftrightarrow x=9\)
vậy ...
1)
\(A=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}\right)^2-2^2}\\ A=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)
\(B=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{x^2-2x\sqrt{2}+\left(\sqrt{2}\right)^2}{x^2-\sqrt{2}}\\ B=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{\left(x-\sqrt{2}\right)}{\left(x+\sqrt{2}\right)}\)
\(C=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+\left(\sqrt{5}\right)^2}\\ C=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
\(D=\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}=\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)}{2\sqrt{a}-1}=\sqrt{a}\)
\(E=\dfrac{x^2-2}{x-\sqrt{2}}=\dfrac{x^2-\left(\sqrt{2}\right)^2}{x-\sqrt{2}}\\ E=\dfrac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=x+\sqrt{2}\)
\(F=\dfrac{\sqrt{x}-3}{x-9}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}\right)^2-3^2}\\ F=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ F=\dfrac{1}{\sqrt{x}+3}\)
Điều kiện \(x\ne y\)
\(A=\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}.\left|x+y\right|}{2}=\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right)\left(x+y\right)}\)
Nếu \(x+y>0\) thì \(A=\frac{\sqrt{3}}{x-y}\)
Nếu \(x+y< 0\) thì \(A=\frac{\sqrt{3}}{y-x}\)
\(\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}\)
\(ĐK:x\ne\pm y\)
\(=\dfrac{2\left|x+y\right|}{2\left(x+y\right)\left(x-y\right)}=\dfrac{\sqrt{3}\left|x+y\right|}{\left(x+y\right)\left(x-y\right)}\)
Nếu x > -y thì x + y > 0 , ta có :\(\dfrac{\sqrt{3}}{x-y}\)
Nếu x < -y thì x + y < 0 , ta có :\(\dfrac{-\sqrt{3}}{x-y}\)
a)\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right)\div\sqrt{15}=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right)\div\sqrt{3}\sqrt{5}=10\sqrt{3}\div\sqrt{3}\sqrt{5}=\sqrt{2}\sqrt{5}\div\sqrt{5}=\sqrt{2}\)b)\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}\sqrt{9}\sqrt{7}-\sqrt{100}\sqrt{7}+\sqrt{16}\sqrt{9}\sqrt{7}-\sqrt{64}\sqrt{7}=2\cdot3\cdot\sqrt{7}-10\cdot\sqrt{7}+4\cdot3\cdot\sqrt{7}-8\sqrt{7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
c)\(\sqrt{27^2-23^2}+\sqrt{37^2-35^2}=\sqrt{\left(27-23\right)\left(27+23\right)}+\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{4\cdot50}\cdot\sqrt{2\cdot72}=\sqrt{4\cdot50\cdot2\cdot72}=\sqrt{2^2\cdot2\cdot25\cdot2\cdot36\cdot2}=\sqrt{16}\cdot\sqrt{25}\cdot\sqrt{36}=4\cdot5\cdot6=120\)
d)\(\left(\sqrt{\dfrac{1}{7}}+\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right)\div\sqrt{7}=\left(\dfrac{1}{\sqrt{7}}+\dfrac{4}{\sqrt{7}}+\dfrac{3}{\sqrt{7}}\right)\cdot\dfrac{1}{\sqrt{7}}=\dfrac{7}{\sqrt{7}}\cdot\dfrac{1}{\sqrt{7}}=1\)
\(A=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x^2++2xy+y^2\right)}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x-y\right)^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\sqrt{3}\left(x-y\right)}{2}=\dfrac{\sqrt{3}}{x+y}\)
\(B=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(1-4a+4a^2\right)}=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{1}{2a-1}\cdot\sqrt{5}a^2\left(2a-1\right)=\sqrt{5}\cdot a^2\)
\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)
<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)
<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)
<=>\(\frac{\sqrt{3}}{x-y}\)
\(a.\sqrt{\left(1-\sqrt{5}\right)^2}+1=\left|1-\sqrt{5}\right|+1=\sqrt{5}-1+1=\sqrt{5}\)
\(b.\sqrt{3+2\sqrt{2}}-2=\sqrt{\left(\sqrt{2}+1\right)^2}-2=\sqrt{2}+1-2=\sqrt{2}-1\)
\(c.\sqrt{b^2-b+\dfrac{1}{4}}-\left(2b-\dfrac{1}{2}\right)=\sqrt{\left(b-\dfrac{1}{2}\right)^2}-2b+\dfrac{1}{2}=b-\dfrac{1}{2}-2b+\dfrac{1}{2}=-2b\)
\(d.\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}\)
\(e.\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}-2\right)^2}=\sqrt{7}-2\)
\(g.3x+\sqrt{x^2-2x+1}=3x+\sqrt{\left(x-1\right)^2}\)
* \(x\ge1\Rightarrow3x+\left|x-1\right|=3x+x-1=4x-1\)
* \(x< 1\Rightarrow3x+\left|x-1\right|=3x+1-x=2x+1\)
\(h.\sqrt{y+2\sqrt{y^2-2y+1}}=\sqrt{y+2\sqrt{\left(y-1\right)^2}}=\sqrt{y+2y-2}=\sqrt{3y-2}\left(y\ge1\right)\) hoặc: \(\sqrt{y+2-2y}=\sqrt{-y+2}\left(y< 1\right)\)
\(H=\sqrt{17-2\sqrt{32}}+\sqrt{17+2\sqrt{32}}\)
\(H^2=17-2\sqrt{32}+17+2\sqrt{32}+2\sqrt{\left(17-2\sqrt{32}\right)\left(17+2\sqrt{32}\right)}=34+2\sqrt{161}\)
\(H=\sqrt{34+2\sqrt{161}}\)
\(k.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
Hỏi nhiều thế.
\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\sqrt{3}}{2}\cdot\left|x+y\right|\)
\(=\pm\dfrac{\sqrt{3}}{\left(x-y\right)}\)