Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...0\left(1-\frac{2011}{2010}\right)\)
\(=0\)
\(1\frac{13}{15}.0,75-\left(\frac{8}{15}+25\%\right).\frac{24}{47}-3\frac{12}{13}:3\)
\(=\frac{28}{15}.\frac{3}{4}-\left(\frac{8}{15}+\frac{1}{4}\right).\frac{24}{47}-\frac{51}{13}:3\)
\(=\frac{7}{5}-\frac{47}{60}.\frac{24}{47}-\frac{17}{13}\)
\(=\frac{7}{5}-\frac{2}{5}-\frac{17}{13}\)
\(=\frac{-4}{13}\)
\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Leftrightarrow\frac{13}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{-11}{12}\)
\(\Leftrightarrow\frac{-13}{9}\le x\le\frac{-11}{18}\)
\(\Leftrightarrow x=-1\)
a) \(x=\frac{9}{10}\)
b) \(x=\frac{-4}{3}\)
c) \(x=\frac{1}{42}\)
d) \(x=\frac{-47}{10}\)
ko có thời gian nên mình chỉ cho đáp án thôi nhé
thông cảm cho mình ngen
đúng thì k đấy
chúc bạn học giỏi
a) Ta có:
\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)
\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)
\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)
\(=x+2x+-3+1-21\)
\(=3x-23\)
=> \(3x-23=2020\)
\(3x=2020+23=2043\)
=> \(x=2043:3=681\)
Nhầm
\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)
\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)
1.\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{49}{50}=\frac{1}{50}\)
\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{21}{20}\)
\(B=\frac{21}{2}\)
@@@
\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{20}\right)\)
\(\Rightarrow B=\left(\frac{2}{2}+\frac{1}{2}\right)\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{20}{20}+\frac{1}{20}\right)\)
\(\Rightarrow B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{21}{20}\)
\(\Rightarrow B=\frac{21}{2}\)
Câu b: Đặt \(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{2004}-1\right)\)
Ta có: \(\frac{1}{2}-1=\left(-\frac{1}{2}\right);\frac{1}{3}-1=\left(-\frac{2}{3}\right);...;\frac{1}{2004}-1=\left(-\frac{2003}{2004}\right)\)
\(\Rightarrow B=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{2003}{2004}\right)\)
Vì B là 2003 thừa số âm nhân lại với nhau nên B là số âm
\(\Rightarrow B=-\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\right)=-\frac{1}{2004}\)
Câu a: Đặt \(A=1+2^4+2^8;B=1+2+2^2+...+2^{11}\)
\(\Rightarrow16A=2^4+2^8+2^{12}\) \(\Rightarrow15A=2^{12}-1\) \(\Rightarrow A=\frac{2^{12}-1}{15}\) \(\left(1\right)\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{12}\) \(\Rightarrow B=2^{12}-1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow A:B=\frac{2^{12}-1}{15}:\left(2^{12}-1\right)=\frac{1}{15}\)
\(B=\left[1-\frac{1}{2}\right]\cdot\left[1-\frac{1}{3}\right]\cdot\left[1-\frac{1}{4}\right]\cdot...\cdot\left[1-\frac{1}{20}\right]\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{19}{20}\)
\(B=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}=\frac{1}{20}\)