K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

e chịu thui

21 tháng 11 2016

\(B=\frac{5}{1.2.3}+\frac{5}{2.3.4}+...+\frac{5}{n.\left(n+1\right)\left(n+2\right)}\)

\(\Leftrightarrow\frac{2B}{5}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow B=\frac{5}{4}-\frac{5}{2\left(n+1\right)\left(n+2\right)}\)

9 tháng 12 2017

B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)

B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]

Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.

24 tháng 3 2016

Sorry em mới học lớp 6

24 tháng 3 2016

A = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+........+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

A = \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+............+\frac{2n+1}{2^2.\left(n+1\right)^2}\)

A = \(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+........\frac{2n+1}{n^2.\left(n+1\right)^2}\)

A = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.........+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)2}\)

A = \(\frac{1}{1}-\frac{2n+1}{\left(n+1\right)^2}\)

A = \(1-\frac{2n+1}{\left(n+1\right)2}\)

nha bạn.

21 tháng 11 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}\)

21 tháng 11 2016

kb nha

ok

12 tháng 8 2018

bạn tách ra xong làm cx dễ mà đây là toán 6

12 tháng 8 2018

Cảm ơn câu trả lời thật súc tích và thật ngắn gọn của bạn

14 tháng 9 2017

Em chỉ làm những bài e biết thôi, thông cảm nhs :D

a/ chịu

b/ \(C=1+7+7^2+.........+7^{50}\)

\(\Leftrightarrow7C=7+7^2+...........+7^{50}+7^{51}\)

\(\Leftrightarrow7C-C=\left(7+7^2+.......+7^{51}\right)-\left(1+7+.....+7^{50}\right)\)

\(\Leftrightarrow6C=7^{51}-1\)

\(\Leftrightarrow C=\dfrac{7^{51}-1}{6}\)

c/ \(A=\dfrac{-1}{4}+\dfrac{7}{3}+\dfrac{3}{4}+\dfrac{9}{2}\)

\(=\left(\dfrac{-1}{4}+\dfrac{3}{4}\right)+\left(\dfrac{7}{3}+\dfrac{9}{2}\right)\)

\(=\dfrac{1}{4}+\dfrac{41}{6}\)

\(=\dfrac{85}{12}\)

d/ Thấy phép tính hơi dài

e/ \(C=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.........+\dfrac{1}{2015.2016.2017}\)

\(\Leftrightarrow2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+.........+\dfrac{2}{2015.2016.2017}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.......+\dfrac{1}{2015.2016}-\dfrac{1}{2016.2017}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2016.2017}\)

\(=\dfrac{1}{2}-\dfrac{1}{4066272}\)

\(=\dfrac{2033136}{4066272}\)

\(\Leftrightarrow C=\dfrac{2033136}{4066272}:2\)

\(\Leftrightarrow C=?\)