Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
Ta có: \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow2A=2^{20010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A-A=\left(2^{20010}+2^{2009}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)\(\Rightarrow A=\left(2^{2010}-1\right)+\left(2^{2009}-2^{2009}\right)+\left(2^{2008}-2^{2008}\right)+...+\left(2-2\right)\)\(\Rightarrow A=2001-1\)
\(\Rightarrow H=2^{2010}-\left(2^{2010}-1\right)\)
\(\Rightarrow H=2^{2010}-2^{2010}+1=1\)
Thay \(H=1\) vào biểu thức \(2010^H\)
\(\Rightarrow2010^H=2010^1=1\)
Vậy \(2010^H=1\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
\(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
\(2^{2009}+2^{2008}+.......+2+1=b\)
\(\Rightarrow2b=2^{2010}+2^{2009}+.........+2^2+2\)
\(\Rightarrow2b-b=2^{2010}-1\Rightarrow b=2^{2010}-1\)
\(\Rightarrow A=2^{2010}-b=2^{2010}-\left(2^{2010}-1\right)=1\)
\(A=2^{2010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A=2^{2011}+2^{2010}+...+2^3+2^2\)
\(\Rightarrow2A-A=\left(2^{2011}+2^{2010}+...+2^3+2^2\right)-\left(2^{2010}+2^{2009}+...+2^2+2\right)\)
\(\Rightarrow A=2^{2011}-2\)
Vậy \(A=2^{2011}-2\)