K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

thôi không cần nữa các bạn ạ ! mình giải đc r đáp án là cosh(0) +1 nhé!

18 tháng 5 2019

\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left(2-\sqrt{5}\right)-\left(\sqrt{5}-1\right)\)

\(=2-\sqrt{5}-\sqrt{5}+1\)

\(=3-2\sqrt{5}\)

18 tháng 5 2019

\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=|2-\sqrt{5}|-|\sqrt{5}-1|.\)

\(=\sqrt{5}-2-\sqrt{5}+1\)(Vì \(2=\sqrt{4}< \sqrt{5};1=\sqrt{1}< \sqrt{5}\))

\(=-1\)

\(\sqrt{5+2\sqrt{6}}+\sqrt{10-4\sqrt{6}}=\sqrt{2+2.\sqrt{2}\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{6}+6}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{6}\right)^2}\)

\(=|\sqrt{2}+\sqrt{3}|+|2-\sqrt{6}|\)

\(=\sqrt{2}+\sqrt{3}+\sqrt{6}-2\)( Vì \(\sqrt{6}>\sqrt{4}=2\))

24 tháng 9 2020

\(B\sqrt{2}=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)\(=\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2=\sqrt{5}+1-\sqrt{5}+1-2=0\Rightarrow B=0\)

\(C=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(1-\sin^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(1-\cos^2a\right)\)

\(=\left(1+\frac{\sin^2a}{\cos^2a}\right)\left(\cos^2a\right)+\left(1+\frac{\cos^2a}{\sin^2a}\right)\left(\sin^2a\right)\)

\(=\frac{\sin^2a+\cos^2a}{\cos^2a}.\cos^2a+\frac{\cos^2a+\sin^2a}{\sin^2a}.\sin^2a\)

\(=\frac{1}{\cos^2a}.\cos^2a+\frac{1}{\sin^2a}\sin^2a=2\)

24 tháng 9 2020

  Bạn dùng theo công thức này  

\(\sqrt{m+n\sqrt{p}};\sqrt{m-n\sqrt{p}}\)   

Dùng pt bậc 2 

\(a=1;b=-m;c=\frac{\left(n\sqrt{p}\right)^2}{4}\) 

Nghiệm x1 ; x2 

\(\sqrt{\left(\sqrt{x1}+\sqrt{x2}\right)^2};\sqrt{\left(\sqrt{x1}-\sqrt{x2}\right)^2}\) 

\(B=\sqrt{\left(\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}-\sqrt{2}\) 

\(=|\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}|-|\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}|-\sqrt{2}\) 

\(=\sqrt{\frac{5}{2}}+\sqrt{\frac{1}{2}}-\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)-\sqrt{2}\) 

\(=2\cdot\sqrt{\frac{1}{2}}-\sqrt{2}\) 

\(=\sqrt{2}-\sqrt{2}=0\)

C. 

\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\) 

\(=1+1=2\)

9 tháng 8 2017

1)   \(\sqrt{\left(1-\sqrt{2}\right)^2}\)\(+\sqrt{\left(\sqrt{2}+3\right)^2}\)

\(=1-\sqrt{2}+\sqrt{2}+3\)

\(=4\)

2) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-2+\sqrt{3}-1\)

\(=2\sqrt{3}-3\)

11 tháng 7 2018

ai tích mình mình tích lại cho

11 tháng 7 2018

\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6+1}\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\sqrt{6+1}\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=\sqrt{5}\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=\sqrt{5}\left(\sqrt{6}+\sqrt{2}+\sqrt{3}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=\sqrt{5}\left(2\sqrt{6}-2\right)\)

\(=2\sqrt{30}-2\sqrt{5}\)

6 tháng 9 2017

\(Q=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)

\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\frac{x}{x-1}\)

\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}.\frac{x}{x-1}\)

\(=\frac{\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}\)

Nếu  \(x\ge2\) thì 

\(Q=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x\sqrt{x-1}}{\left(x-2\right)\left(x-1\right)}=\frac{2x}{\left(x-2\right)\left(\sqrt{x-1}\right)}\)

Nếu \(x< 2\) thì \(Q=\frac{1-\sqrt{x-1}+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x}{\left(x-2\right)\left(x-1\right)}\)

6 tháng 9 2017

Cảm ơn bạn nhiều nhưng mình thấy \(1-\frac{1}{x-1}=\frac{x-2}{x-1}\)  mà bạn sao lại bằng \(\frac{x}{x-1}\)được 

C= \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)          -  \(\frac{2}{\sqrt{ab}}\)\(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\)

\(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)-   \(\frac{2}{\sqrt{ab}}\).: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{ab}\)

\(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)-\(\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

=1

#mã mã#