Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{19}{20}\)
\(=\dfrac{1.2.3....19}{2.3.4.....20}\)
\(=\dfrac{1.2.3....19:\left(2.3.....19\right)}{2.3.4.....20:\left(2.3.4.....19\right)}\)
\(=\dfrac{1}{20}\)
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2\left(1\right)}\cdot\frac{2\left(1\right)}{3\left(1\right)}\cdot\frac{3\left(1\right)}{4\left(1\right)}\cdot...\cdot\frac{19\left(1\right)}{20}\)
\(A=\frac{1}{1}\cdot\frac{1}{20}\)
\(A=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1}{20}\)
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)
\(2C=1-\frac{1}{3^{99}}< 1\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
1.
B = 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1
3B = 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
3B + B = ( 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3 ) + ( 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1 )
4B = 3101 + 1
B = \(\frac{3^{101}+1}{4}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1}{20}\)
B=(1-1/2)(1-1/3)........(1-1/20)
B=1/2.2/3.......19/20
B=1/20