Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) X4 - y4 / y3 -x3 = (x2) 2 - (y2 )2 / (y-x)(y^2+xy+x^2)= (x^2-y^2)(x^2+y^2) / (y-x)(y^2+xy+x^2)=-(x-y)(x+y)(x^2+y^2) / (x-y)(x^2+xy+y^2)= - (x+y)(x^2+y^2) / x^2 + xy + y^2
Câu b, bạn nhóm các hạng tử vào vs nhau sẽ xuất hiện nhân tử chung rồi rút gọn đi là ok. Nhóm 2x^3 vs -2x, x^2 vs cộng 1 thì đặt dấu trừ ra ngoài.. Bên dưới nhóm x^3 vs -x,2x^2 vs -2
Bài làm
\(\left(x^2-2\right)\left(1-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x^2-x^3-2+2x+x^3+27=x^2+2x+25\)
\(B=\frac{x+2}{x+3}\cdot\frac{x+3}{x+4}:\frac{x+4}{x+5}\cdot\frac{\left(x+4\right)^2}{x+5}\)
\(B=\frac{x+2}{x+3}\cdot\frac{x+3}{x+4}\cdot\frac{x+5}{x+4}\cdot\frac{\left(x+4\right)^2}{x+5}\)
\(B=\frac{\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+4\right)^2}{\left(x+3\right)\left(x+4\right)\left(x+4\right)\left(x+5\right)}\)
\(B=\frac{x+2}{1}\)
\(B=x+2\)
\(B=\frac{x+2}{x+3}.\frac{x+3}{x+4}.\frac{x+4}{x+5}.\frac{\left(x+4\right)^2}{x+5}\)
\(B=\frac{\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+4\right)^2}{\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+5\right)}\)
\(B=\frac{\left(x+2\right)\left(x+4\right)^2}{\left(x+5\right)^2}\)
A = ( x - 3 )3 - ( x + 1 )3 + 12x( x - 1 )
= x3 - 9x2 + 27x - 27 - ( x3 + 3x2 + 3x + 1 ) + 12x2 - 12x
= x3 - 9x2 + 27x - 27 - x3 - 3x2 - 3x - 1 + 12x2 - 12x
= ( x3 - x3 ) + ( 12x2 - 9x2 - 3x2 ) + ( 27x - 3x - 12x ) + ( -27 - 1 )
= 12x - 28
+)Với x = -2/3 => A = \(12\times\left(-\frac{2}{3}\right)-28=-8-28=-36\)
+) Để A = -16 => 12x - 28 = -16
=> 12x = 12
=> x = 1
a) \(A=\left(x-3\right)^3-\left(x+1\right)^3+12x\left(x-1\right)\)
\(=\left(x^3-9x^2+27x-27\right)-\left(x^3+3x^2+3x+1\right)+\left(12x^2-12x\right)\)
\(=12x-28\)
b) Thay \(x=\frac{-2}{3}\)vào biểu thức A ta có:
\(A=12.\left(\frac{-2}{3}\right)-28=-36\)
Vậy giá trị của A là -36 tại x=-2/3
c) \(A=-16\Rightarrow12x-28=-16\)
\(\Leftrightarrow12x=-16+28\Leftrightarrow12x=12\Leftrightarrow x=1\)
Vậy để A=-16 thì x=1
\(A=\left(\dfrac{x-1}{x\left(x-2\right)}+\dfrac{x+1}{x\left(x+2\right)}-\dfrac{4}{x\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)
\(=\dfrac{x^2+x-2+x^2-x+2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)
\(=\dfrac{2x^2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)
\(=\dfrac{2x\left(x^2-2\right)\left(x-3\right)}{2x\left(x-2\right)\cdot\left(x+2\right)^2}=\dfrac{\left(x^2-2\right)\left(x-3\right)}{\left(x-2\right)\left(x+2\right)^2}\)
a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:
\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)
\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)
b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)
=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)
c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)
d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6
a) ĐKXĐ : \(x\ne0;x\ne\pm2;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
Đặt \(B=\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\)
\(B=\frac{\left(x+2\right)\left(x+2\right)}{-\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(2-x\right)\left(x-2\right)}{\left(2+x\right)\left(x-2\right)}\)
\(B=\frac{-\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-\left(x+2\right)^2-4x^2--\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x}{x-2}\)
\(\Rightarrow A=\frac{-4x}{x-2}:\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(\Leftrightarrow A=\frac{-4x\cdot x^2\cdot\left(2-x\right)}{\left(x-2\right)\cdot x\cdot\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{4x^2\cdot x\cdot\left(x-2\right)}{\left(x-3\right)\cdot x\cdot\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{4x^2}{x-3}\)
b) \(\left|x-7\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => x = 11
\(\Leftrightarrow A=\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)
c) \(A=\frac{4x^2}{x-3}\)
Để A dương thì hoặc cả tử và mẫu âm hoặc cả tử và mẫu dương
Dễ thấy \(4x^2\ge0\forall x\)
=> Để A dương thì x - 3 dương
hay x - 3 > 0
<=> x > 3
Vậy x > 3 thì A > 0
ĐKXĐ : \(x\ne\pm1\)
a) \(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
\(A=\left[\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-\frac{x\left(1-x\right)}{1-x}\right]:\frac{\left(1-x\right)\left(x+1\right)}{\left(1-x\right)-x^2\left(1-x\right)}\)
\(A=\frac{\left(1-x\right)\left(x^2+x+1\right)-x\left(1-x\right)}{1-x}\cdot\frac{\left(1-x\right)\left(1-x^2\right)}{\left(1-x\right)\left(x+1\right)}\)
\(A=\frac{\left(1-x\right)\left(x^2+x+1-x\right)}{1-x}\cdot\frac{\left(1-x\right)\left(1-x\right)\left(x+1\right)}{\left(1-x\right)\left(x+1\right)}\)
\(A=\frac{\left(1-x\right)\left(x^2+1\right)\left(1-x\right)}{1-x}\)
\(A=\left(1-x\right)\left(x^2+1\right)\)
b) Để A < 0 thì \(1-x\)và \(x^2+1\)trái dấu
Mà \(x^2+1>0\forall x\)
Vậy để A < 0 thì \(1-x< 0\Leftrightarrow x>1\)
Vậy....
a) ta có: A=\(\frac{\left(1-x\right)+x^2\left(1-x\right)}{1-x}:\frac{1-x^2}{\left(1-x\right)\left(1-x^2\right)}=\left(x^2+1\right)\cdot\left(1-x\right)=1-x^3\)
b) Để A<0 <=> x^3>1 <=>x>1