Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\left(x-2\right)\left(x-3\right)}{\left(3x^2-27\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x-3\right)}{\left(x-2\right)3\left(x-3\right)\left(x+3\right)}=\frac{2}{3\left(x+3\right)}\)
\(x^3+2x^2-x-2\)
\(=x^3+3x^2+2x-1x^2-3x-2\)
\(=x\left(x^2+3x+2\right)-1\left(x^2+3x+2\right)\)
\(=\left(x-1\right)\left(x^2+3x+2\right)\)
\(=\left(x-1\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
\(x^3+3x+2\)
\(=x^3+2x^2-2x^2-4x+x+2\)
\(=\left(x+2\right)x^2-2\left(x^2+2x\right)+x+2\)
\(=\left(x+2\right)x^2-2\left(x^2+2x\right)1\left(x+2\right)\)
\(=\left(x^2-2x+1\right)\left(x+2\right)\)
\(=\left(x-1\right)^2\left(x+2\right)\)
Lời giải:
$\frac{x^3-3x^2-x+3}{x^2-3x}=\frac{x^2(x-3)-(x-3)}{x(x-3)}=\frac{(x-3)(x^2-1)}{x(x-3)}=\frac{x^2-1}{x}$
Phân tích đa thức thành nhân tử
27y2-9(x+y)2=\(9\left(3y^2-\left(x+y\right)^2\right)\)
=\(9\left(\sqrt{3}y+x+y\right)\left(\sqrt{3}y-x-y\right)\)
Rút gọn biểu thức
(2x4-x3+3x2): (-1/3x)
=\(\frac{2x^4-x^3+3x^2}{-\frac{1}{3x}}=3x^3\left(-2x^2+x-3\right)\)
Bài 1 :
a, \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2-9\right)\)
\(=x^2+6x+9+x^2-6x+9+2x^2-18\)
\(=4x^2\)
b, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9=8\)
\(\dfrac{x^3+3x^2-2}{x^3+3x+4}\)
\(=\dfrac{x^3+x^2+2x^2+2x-2x-2}{x^3-x+4x+4}\)
\(=\dfrac{\left(x+1\right)\left(x^2+2x-2\right)}{\left(x+1\right)\left(x^2-x+4\right)}\)
\(=\dfrac{x^2+2x-2}{x^2-x+4}\)