Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x+1)^2+2(4x^2-2)+(2x-1)^2=4x2+4x+1+8x2-4+4x2-4x+1=16x2-2
Lời giải:
Xét tử thức:
$x^4+x^3-x^2-2x-2=(x^4-2x^2)+(x^3-2x)+(x^2-2)$
$=x^2(x^2-2)+x(x^2-2)+(x^2-2)=(x^2-2)(x^2+x+1)$
Xét mẫu thức:
$x^4+2x^3-x^2-4x-2=(x^4+2x^3+x^2)-2(x^2+2x+1)=(x^2+x)^2-2(x+1)^2$
$=x^2(x+1)^2-2(x+1)^2$
$=(x+1)^2(x^2-2)$
$\Rightarrow \frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}=\frac{(x^2-2)(x^2+x+1)}{(x^2-2)(x+1)^2}=\frac{x^2+x+1}{(x+1)^2}$
\(a.\) \(\frac{x^2+y^2+2xy-1}{x^2-y^2+1+2x}=\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-y+1\right)\left(x+y+1\right)}=\frac{x+y-1}{x-y+1}\)
\(b.\) \(\frac{x^3-3x^2-x+3}{x^2-3x}=\frac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\frac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\frac{x^2-1}{x}\)
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
a) x(2x^2 -3) -x^2 (5x+1 ) + x^2
<=> 2x^3 -3x -5x^3 -x^2 +x^2
<=>3x^3 -3x
b) 3x(x-2) -5x(1-x)-8(x^2 -3)
=3x^2 -6x -5x +5x^2 -8x^2 +24
= -11x+24
Bài 1 :
a) \(x^4-4x^2-4x-1\)
\(=x^4-\left(4x^2+4x+1\right)\)
\(=x^4-\left(2x+1\right)^2\)
\(=\left(x^2-2x-1\right)\left(x^2+2x+1\right)\)
b) \(x^2+2x-15\)
\(=x^2+2x+1-16\)
\(=\left(x+1\right)^2-4^2\)
\(=\left(x+1+4\right)\left(x+1-4\right)=\left(x+5\right)\left(x-3\right)\)
c) \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
B2:
a) \(2\left(x-1\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=2\left(x^2-2x+1\right)-\left(4x^2-9\right)\)
\(=2x^2-4x+2-4x^2+9\)
\(=-2x^2-4x+11\)
b) \(\left(x+3\right)^2-2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(x+3-x+3\right)^2=6^2=36\)
c) \(4\left(x-1\right)\left(x+3\right)+5\left(2x+1\right)^2-2\left(5-3x\right)^2\)
\(=4\left(x^2+2x-3\right)+5\left(4x^2+4x+1\right)-2\left(9x^2-30x+25\right)\)
\(=4x^2+8x-12+20x^2+20x+5-18x^2+60x-50\)
\(=6x^2+88x-57\)
Bạn tham khảo.
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{2x^2-x^3}{x^2-4}=\dfrac{x^2\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{-x^2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-x^2}{x+2}\)
\(---\)
ĐKXĐ: \(x\ne-1\)
\(\dfrac{x+1}{x^3+1}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)