Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)
b, Giá trị của x để phân thức có giá trị bằng (-2) :
\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)
\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\left(DK:x\ne-1;x\ne1\right)\)
\(=\frac{x^4\left(x^3+x^2+x+1\right)+\left(x^3+x^2+x+1\right)}{x^2-1}\)
\(=\frac{x^4\left[x\left(x^2+1\right)+x^2+1\right]+\left[x\left(x^2+1\right)+x^2+1\right]}{x^2-1}\)
\(=\frac{\left(x^4+1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)
\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)
\(=\frac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^6+x^4+x^2\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^6+x^4+x^2}{x+1}\)
\(=\frac{x^2\left(x^3+x^2+1\right)}{x+1}\)
Cả tử và mẫu có nhân tử chung là x2 + x + 1 rút gọn cái đó đi là được
\(=\frac{x^4-x^2-3x^2+3}{x^4-x^2+7x^2-7}=\frac{x^2\left(x^2-1\right)-3\left(x^2-1\right)}{x^2\left(x^2-1\right)+7\left(x^2-1\right)}=\frac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\frac{x^2-3}{x^2+7}\)
\(M=\frac{x^8\left(x+1\right)+x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x^8+x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^8+x^6+x^4+x^2+1}{x-1}\)
M=\(\frac{\left(x^9+x^8\right)\left(x^7+x^6\right)+...+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
M=\(\frac{x^8\left(x+1\right)+x^6\left(x+1\right)+...+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
M=\(\frac{\left(x+1\right)\left(x^8+x^6+x^4+x^2\right)}{\left(x+1\right)\left(x-1\right)}\)
M=\(\frac{x^8+x^6+x^4+x^2}{x-1}\)
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
Ta thấy:\(\frac{x^7-x^4}{x^6-1}\)
\(=\frac{x^4\left(x^3-1\right)}{\left(x^2-1\right)\left(x^4+x^2+1\right)}\)
\(=\frac{x^4\left(x-1\right)\left(x^2+x+1\right)}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^4}{x^3+1}\)