Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Đặt\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+......+\frac{1}{2013}}\)
\(A=\frac{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2013}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+......+\left(\frac{1}{2013}+1\right)}\)
\(A=\frac{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2013}\right)}{\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+....+\frac{2014}{2013}}\)
\(A=\frac{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2013}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}=\frac{1}{2014}\)
\(A=\frac{T}{M}\)
\(M=\frac{2012}{2}+1+\frac{2011}{3}+1+.....+\frac{1}{2013}+1=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}\)
\(=2014\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)=2014.T\)
\(A=\frac{T}{M}=\frac{T}{2014.T}=\frac{1}{2014}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2013}}\)=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}=\frac{1}{2014}\)
bn xem kết quả có đúng ko?
bấm máy tính ra kết quả ai trả làm được phải làm cách giải mới khó
Xét mẫu số ta có: \(2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)
=\(2012+\left(\frac{2014-2}{2}+\frac{2014-3}{3}+...+\frac{2014-2013}{2013}\right)\)
= \(2012+\left(\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2013}\right)-\left(\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+...+\frac{2013}{2013}\right)\)
= \(2012+2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)-2012\)
= \(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)\)
\(\Rightarrow A=\frac{1}{2014}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+....+\left(\frac{1}{2013}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)}\)
\(=\frac{1}{2014}\)
Bài này giống trong cuộc thi của Nguyễn Huy Tú quá nhỉ?
Mình không có thi mà bạn