Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lời giải nè
f(x)=x14-(13+1)x13+(13+1)x12-....+(13+1)x2-(13+1)x+(13+1)
mà theo đầu bài f(x)=13 => chỗ nào có 13 ta thay thành x
=>f(13)=x14-(x+1)x13+(x+1)x13-.......+(x+1)x2-(x+1)x+(x+1)
<=>f(13)=x14-x14-x13+x14+x13-.......+x3_x2-x2-x+x+1=1
=>f(13)=1
k cho mk nha!!!
Bài 1:
\(f\left(x\right)=x^2+8x+25\)
Cho \(f\left(x\right)=0\Rightarrow x^2+8x+25=0\)
\(\Rightarrow x^2+8x+16+9=0\)
\(\Rightarrow\left(x+4\right)^2+9=0\)
Dễ thấy: \(\left(x+4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+4\right)^2+9\ge9>0\forall x\) ( vô nghiệm )
Vậy đa thức \(f\left(x\right)=x^2+8x+25\) không có nghiệm
Bài 2:
\(f\left(x\right)=x^{14}-14x^{13}+14x^{12}-...+14x^2-14x+14\)
\(f\left(x\right)=x^{14}-\left(13+1\right)x^{13}+\left(13+1\right)x^{12}-...+\left(13+1\right)x^2-\left(13+1\right)x+\left(13+1\right)\)
Do \(f\left(x\right)=13\) nên ta chỗ nào có \(13\) ta thay bằng \(x\)
\(f\left(13\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(f\left(13\right)=x^{14}-x^{14}-x^3+x^{13}+x^{12}-...+x^3+x^2-x^2-x+x+1=1\)
Vậy \(f\left(13\right)=1\)
a)
\(A=-1+5x^6-6x^2-5+9x^6+4x^2-3x^2\)
\(=-6+14x^6-5x^2\)
→ Sắp xếp: \(A=14x^6-5x^2-6\)
\(B=-6-5x^2+3x^4-5x^2+3x+x^4+14x^6-5x\)
\(=-6-10x^2+4x^4-2x+14x^6\)
→ Sắp xếp: \(B=14x^6+4x^4-10x^2-2x-6\)
b) \(A\left(x\right)+B\left(x\right)=14x^6-5x^2-6+14x^6+4x^4-10x^2-2x-6\)
\(=28x^6-15x^2+4x^4-2x-12\)
\(A\left(x\right)-B\left(x\right)=\left(14x^6-5x^2-6\right)-\left(14x^6+4x^4-10x^2-2x-6\right)\)
\(=14x^6-5x^2-6-14x^6-4x^4+10x^2+2x+6\)
\(=5x^2-4x^4+2x\)
m(x) = -4x3 + 14x2 + 10x - 11
Để m(x) có nghiệm
=> -4x3 + 14x2 + 10x - 11 = 0
=> -4x3 + 14x2 + 10x = 11
=> 2(-2x3 + 7x2 + 5x) = 11
Đến đây tôi cần bạn thêm dữ liệu là với x nguyên.
=> Vì 11 không chia hết cho 2 nên -2x3 + 7x2 + 5x không nguyên
mà x nguyên (nên -2x3 + 7x2 + 5x nguyên)
=> VÔ LÝ.
Vậy m(x) không có nghiệm.
m(x) = -4x3 + 14x2 + 10x - 11 Để m(x) có nghiệm => -4x3 + 14x2 + 10x - 11 = 0 => -4x3 + 14x2 + 10x = 11 => 2(-2x3 + 7x2 + 5x) = 11 Đến đây tôi cần bạn thêm dữ liệu là với x nguyên. => Vì 11 không chia hết cho 2 nên -2x3 + 7x2 + 5x không nguyên mà x nguyên (nên -2x3 + 7x2 + 5x nguyên) => VÔ LÝ. Vậy m(x) không có nghiệm.
a: \(M=3x^4y^2+14x^3y^2+11x^2y^2-5x^3y^2-5x^2y^2\)
\(=3x^4y^2+9x^3y^2+6x^2y^2\)
b: \(M=3x^2y^2\left(x^2+3x+2\right)\)
Để M=2011 thì \(x^2y^2\left(x+1\right)\left(x+2\right)=\dfrac{2011}{3}\)
mà x,y là số nguyên
nên M luôn khác 2011
\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)
\(=\left(2x^4+2x^2+1\right)\left(4x^4-2x^2+1\right)\)
\(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)
\(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)
a) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
b) \(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)
c) \(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)
d) \(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)