K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

\(\sqrt{11+4\sqrt{6}}=\sqrt{8+4\sqrt{6}+3}=\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}=2\sqrt{2}+\sqrt{3}\)

\(\sqrt{11+4\sqrt{6}}\)=\(\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^3}\)=\(\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\)=\(2\sqrt{2}\)+\(\sqrt{3}\)

NV
30 tháng 6 2019

\(\sqrt{25-2.5.\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)

\(\sqrt{121+2.11.\sqrt{2}+2}=\sqrt{\left(11+\sqrt{2}\right)^2}=11+\sqrt{2}\)

\(\sqrt{\frac{9}{2}-2.\frac{3}{\sqrt{2}}.\frac{\sqrt{5}}{\sqrt{2}}+\frac{5}{2}}=\sqrt{\left(\frac{3}{\sqrt{2}}-\frac{\sqrt{5}}{\sqrt{2}}\right)^2}=\frac{3}{\sqrt{2}}-\frac{\sqrt{5}}{\sqrt{2}}=\frac{3\sqrt{2}-\sqrt{10}}{2}\)

16 tháng 6 2018

a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)

\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)

\(=4\sqrt{10}+4\sqrt{2}\)

c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)

\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)

\(=5\sqrt{7}\)

16 tháng 6 2018

d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)

\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)

\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)

\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)

\(=\dfrac{1+12\sqrt{2}}{4}\)

e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)

\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)

f) bạn xem đề lại nhé

28 tháng 6 2018

\(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\\\sqrt{x-1}=-3\left(vl\right)\end{cases}}\)

Vậy phương trình có tập nghiệm  \(S=\left\{2\right\}\)

14 tháng 6 2018

Các câu sau bạn tự làm đi mCăn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

7 tháng 7 2018

a, \(\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}\right)^2-2\sqrt{3}.\sqrt{5}-\left(\sqrt{3}\right)^2\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{5}-\sqrt{3}\)

b,

22 tháng 6 2017

Ta có: 

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)

\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)

\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)

Ta lại có:

\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)

Từ (1) và (2) dấu = xảy ra khi \(x=-1\)

Bài 1:

a) Ta có: \(\sqrt{\left(23-15\sqrt{3}\right)^2}\)

\(=\left|23-15\sqrt{3}\right|\)

\(=\left|\sqrt{529}-\sqrt{675}\right|\)

\(=\sqrt{675}-\sqrt{529}\)

\(=15\sqrt{3}-23\)

b) Ta có: \(\sqrt{\left(2-2\sqrt{3}\right)^2}\)

\(=\left|2-2\sqrt{3}\right|\)

\(=2\sqrt{3}-2\)

c) Ta có: \(\sqrt{\left(15-4\sqrt{3}\right)^2}\)

\(=\left|15-4\sqrt{3}\right|\)

\(=15-4\sqrt{3}\)

d) Ta có: \(\sqrt{\left(16-6\sqrt{7}\right)^2}\)

\(=\left|16-6\sqrt{7}\right|\)

\(=\left|\sqrt{256}-\sqrt{252}\right|\)

\(=16-6\sqrt{7}\)

f) Ta có: \(\sqrt{\left(22-8\sqrt{3}\right)^2}\)

\(=\left|22-8\sqrt{3}\right|\)

\(=\left|\sqrt{484}-\sqrt{192}\right|\)

\(=22-8\sqrt{3}\)

g) Ta có: \(\sqrt{\left(9-4\sqrt{2}\right)^2}\)

\(=\left|9-4\sqrt{2}\right|\)

\(=9-4\sqrt{2}\)

h) Ta có: \(\sqrt{\left(13-4\sqrt{3}\right)^2}\)

\(=\left|13-4\sqrt{3}\right|\)

\(=13-4\sqrt{3}\)

i) Ta có: \(\sqrt{\left(7-3\sqrt{3}\right)^2}\)

\(=\left|7-3\sqrt{3}\right|\)

\(=7-3\sqrt{3}\)