K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

a/ \(A=6\sqrt{2}-5\sqrt{2}-\sqrt{2}+1=1\)

b/ \(B=\frac{2}{x-1}.\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{x-1}.\frac{1-x}{2x}=-\frac{1}{x}\)

c/ Để 2A+B=0

\(\Leftrightarrow2-\frac{1}{x}=0\Leftrightarrow2=\frac{1}{x}\Leftrightarrow x=\frac{1}{2}\)

18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

14 tháng 7 2016

1/ 

a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)

 b/  \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

    \(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)

      \(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)

                  \(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)

                   \(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)

                                                      Vậy x = 9/25 , x = 4

14 tháng 7 2016

1) a) ĐKXĐ :  \(0\le x\ne\frac{1}{9}\)

b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
13 tháng 9 2020

Bài 1.

\(B=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\div\frac{x}{x-\sqrt{x}}\)với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

a) \(B=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)

\(B=\left(\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)

\(B=\left(\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)

\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{x}{x-\sqrt{x}}\)

\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x}\)

\(B=\frac{4\sqrt{x}\cdot\sqrt{x}}{\left(\sqrt{x}+1\right)x}=\frac{4x}{\left(\sqrt{x}+1\right)x}=\frac{4}{\sqrt{x}+1}\)

b) Để B > 1

=> \(\frac{4}{\sqrt{x}+1}>0\)( với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\))

Vì 4 > 0

=> \(\sqrt{x}+1>0\)

<=> \(\sqrt{x}>-1\)( luôn luôn đúng \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)) ( theo ĐKXĐ )

Vậy \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)thì B > 1

Chưa chắc lắm ... Còn câu 2 thì tí nữa mình làm cho 

13 tháng 9 2020

Bài 2.

\(A=2\sqrt{5}-1\)

\(B=\frac{2}{x-1}\cdot\sqrt{\frac{x^2-2x+1}{4x^2}}\)( x > 0 )

a) \(B=\frac{2}{x-1}\cdot\frac{\sqrt{x^2-2x+1}}{\sqrt{4x^2}}\)

\(B=\frac{2}{x-1}\cdot\frac{\sqrt{\left(x-1\right)^2}}{\sqrt{\left(2x\right)^2}}\)

\(B=\frac{2}{x-1}\cdot\frac{\left|x-1\right|}{\left|2x\right|}\)

\(B=\frac{2}{x-1}\cdot\frac{x-1}{2x}=\frac{1}{x}\)( vì x > 0 )

b) Để A + B = 0

=> \(\left(2\sqrt{5}-1\right)+\frac{1}{x}=0\)( ĐKXĐ : \(x\ne0\))

<=> \(\frac{1}{x}=-\left(2\sqrt{5}-1\right)\)

<=> \(\frac{1}{x}=1-2\sqrt{5}\)

<=> \(x\times\left(1-2\sqrt{5}\right)=1\)

<=> \(x=\frac{1}{1-2\sqrt{5}}\)( tmđk )

Vậy \(x=\frac{1}{1-2\sqrt{5}}\)

3 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\\x\ne4\end{cases}}\)

\(P=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)

\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(\Leftrightarrow P=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(\Leftrightarrow P=\frac{4x\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow P=\frac{4x}{\sqrt{x}-3}\)

b) Để P < 0

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3< 0\Leftrightarrow4x>0\\\sqrt{x}-3>0\Leftrightarrow4x< 0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}< 3\Leftrightarrow x>0\\\sqrt{x}>3\Leftrightarrow x< 0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x< 9\Leftrightarrow x>0\left(ktm\right)\\x>9\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)

Vậy để \(P< 0\Leftrightarrow x\in\varnothing\)

Để P > 0

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3>0\Leftrightarrow4x>0\\\sqrt{x}-3< 0\Leftrightarrow4x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}>3\Leftrightarrow x>0\left(tm\right)\\\sqrt{x}< 3\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow x>9\Leftrightarrow x>0\left(tm\right)\)

Vậy để \(P>0\Leftrightarrow x>9\)

c) Để  \(\left|P\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}P=1\left(tm\right)\\P=-1\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=1\)

\(\Leftrightarrow4x=\sqrt{x}-3\)

\(\Leftrightarrow4x-\sqrt{x}+3=0\)

\(\Leftrightarrow\left(2\sqrt{x}-\frac{1}{4}\right)^2+\frac{47}{48}=0\left(ktm\right)\)

Vậy để \(\left|P\right|=1\Leftrightarrow x\in\varnothing\)

27 tháng 4 2019

\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

        \(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)

         \(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)

        \(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)

       \(=-3\)

\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

     \(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

    \(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

    \(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

b, Ta có \(B< A\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)

\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)

\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)

\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)

\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)

Vậy ...

21 tháng 10 2018

ĐKXĐ:   \(x\ge0;\)\(x\ne1\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(=\left(\frac{x}{\sqrt{x} \left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{1}{\sqrt{x}-1}\)

\(=\frac{x-1}{\sqrt{x}}\)

21 tháng 10 2018

a) bổ sung ĐKXĐ nhé:   \(x>0;\)\(x\ne1\)

b)  \(P< 0\)

=>  \(\frac{x-1}{\sqrt{x}}< 0\) 

=>  \(x-1< 0\)   (do \(\sqrt{x}>0\))

=>  \(x< 1\)

=>  \(0< x< 1\)

6 tháng 10 2015

a/

\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{1}\right)\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)

b/ Biểu thức nhận giá trị dương khi

\(\sqrt{x}-1>=0\)

\(x>=1\)

Vậy với x>=1 thì biểu thức dương

c/ biểu thức nhận giá trị âm khi

\(\sqrt{x}-1<0\)

\(x<1\)

Vậy với x<1 thì bt âm

d/ Ta có

\(\frac{\sqrt{x}-1}{\sqrt{x}}=-5\)

\(<=>\frac{\sqrt{x}-1}{\sqrt{x}}+5=0\)

Quy đồng và rút gọn ta được

\(6\sqrt{x}-1=0\)

\(\sqrt{x}=\frac{1}{6}\)

\(x=\frac{1}{36}\)

Vậy với x=1/36 thì x=-5 

tick cho mình nha công sức mà