Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
= 1
\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\times\sqrt{3+\sqrt{5}}\times\sqrt{2}\left(\sqrt{5}-1\right)\)
\(=\sqrt{9-5}\times\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}\left(\sqrt{5}-1\right)\)
\(=2\left(5-1\right)\)
= 8
a) \(A=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{5}-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}\)
\(=\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}\)
\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)
\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)\)
\(=\sqrt{5}-\sqrt{5}+1\)
\(=1\)
b) \(B=\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{3-\sqrt{5}}\left(3\sqrt{10}+\sqrt{50}-3\sqrt{2}-\sqrt{10}\right)\)
\(=\sqrt{3-\sqrt{5}}\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)
\(=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)
\(=\sqrt{3-\sqrt{5}}\sqrt{\left(2\sqrt{10}+2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(2\sqrt{10}+2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(4\cdot10+8\sqrt{20}+4\cdot2\right)}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(40+16\sqrt{5}+8\right)}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(48+16\sqrt{5}\right)}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\cdot16\left(3+\sqrt{5}\right)}\)
\(=\sqrt{\left(9-5\right)\cdot16}\)
\(=\sqrt{4\cdot16}\)
\(=\sqrt{64}\)
\(=8\)
\(13-2\sqrt{42}=7-2\sqrt{42}+6\\ =\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{7}-\sqrt{6}\right)^2\)
\(46+6\sqrt{5}=\left(5+2\cdot\sqrt{5}\cdot3+9\right)+32=\left(\sqrt{5}+3\right)^2+32\)(ko rút đc)
\(\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\\ =\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{5-2\sqrt{5}+1}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\\ =4\left(3+\sqrt{5}\right)\)
\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Dễ dàng nhận ra
\(\sqrt{\sqrt{7}-\sqrt{3}}< \sqrt{\sqrt{7}+\sqrt{3}}\Rightarrow\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}< 0\)
Đặt \(x=\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}-2}}< 0\)
\(\Rightarrow x^2=\frac{\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}-2\sqrt{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}}{\sqrt{7}-2}\)
\(\Rightarrow x^2=\frac{2\sqrt{7}-2\sqrt{4}}{\sqrt{7}-2}=\frac{2\sqrt{7}-4}{\sqrt{7}-2}=\frac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)
\(\Rightarrow x=-\sqrt{2}\) (do \(x< 0\))
\(A=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{3+2\sqrt{2}}\)
\(A=\sqrt{2}-1-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(A=\sqrt{2}-1-\sqrt{2}-1=-2\)
B = \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
\(B=\sqrt{6+2\sqrt{5}-\sqrt{29-6\sqrt{20}}}\)
B = \(\sqrt{6+2\sqrt{5}-\sqrt{\left(3-\sqrt{20}\right)^2}}\)
\(B=\sqrt{6+2\sqrt{5}-2\sqrt{5}+3}\)
\(B=\sqrt{9}=3\)
https://hoc24.vn/hoi-dap/question/407636.html
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}\)
= 9
~ ~ ~ ~ ~
\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
\(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}-2\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(3-4\right)\)
\(=\left(\sqrt{3}-1\right).\left(-1\right)=1-\sqrt{3}\)
b/ \(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
c/ \(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{6+2\sqrt{5}-2\sqrt{5}+3}=\sqrt{9}=3\)
d/ \(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
a)
\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)
\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)
b)
\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)
\(\Rightarrow B=0\)
c)
\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)
\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)
d)
\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)
\(=\sqrt{2}.1^2=\sqrt{2}\)
e)
\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)
\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)
f)
\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
b) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{6+2\sqrt{5}-\left(2\sqrt{5}-3\right)}\)
\(=\sqrt{6+3}=3\)
c) Sửa đề: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
Ta có: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)
\(=\sqrt{2+\sqrt{5+2\sqrt{3}-1}}\)
\(=\sqrt{2+\sqrt{3+2\sqrt{3}\cdot1+1}}\)
\(=\sqrt{2+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\sqrt{3+\sqrt{3}}\)
d) Ta có: \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)^2\cdot\left(\sqrt{5}+1\right)+\left(\sqrt{5}+1\right)^2\cdot\left(\sqrt{5}-1\right)}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{5}-1+\sqrt{5}+1\right)}{2\sqrt{2}}\)
\(=\dfrac{4\cdot2\sqrt{5}}{2\sqrt{2}}\)
\(=\dfrac{8\sqrt{5}}{2\sqrt{2}}=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)