Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo tớ thì để phải là:
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)=x^3+8-x^3+2=10.\)
b) \(B=\left(x+3\right)\left(x^3-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27\)
c) \(C=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)=8x^3+y^3-8x^3+y^3=2y^3\)
Cả 3 bài đều áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\) và \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=x^2-6x+9-x^2-4x-4\)
\(=-10x+5\)
\(\left(4x^2-2xy+y^2\right)\left(2x-y\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x-y\right)\left(4x^2-2xy+y^2-4x^2-2xy-y^2\right)\)
\(=\left(2x-y\right)\cdot\left(-4xy\right)\)
a,\(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=x^2-6x+9-x^2-4x-4\)
\(=-10x+5\)
b, \(\left(4x^2-2xy+y^2\right).\left(2x-y\right)-\left(2x-y\right).\left(4x^2+2xy+y^2\right)\)
\(=\left(2x-y\right).\left(4x^2-2xy+y^2-4x^2-2xy-y^2\right)\)
\(=\left(2x-y\right).\left(-4xy\right)\)
\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)
\(b,8x^3+y^3-8x^3+y^3=2y^3\)
a: \(=8x^3-y^3-8x^3-y^3=-2y^3\)
b: \(=x^2-9-\left(x^2+4x-5\right)\)
\(=x^2-9-x^2-4x+5=-4x-4\)
c: \(=\left(3x-2+x+1\right)^2=\left(4x-1\right)^2=16x^2-8x+1\)
Bài 1: Thực hiện phép tính
a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)
b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)
c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)
2) Thực hiện phép tính
a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)
b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)
c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)
Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):
a) (x+y)2+(x-y)2
= \(x^2+2xy+y^2+x^2-2xy+y^2\)
= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
= \(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) (x+2)(x-2)-(x-3)(x+1)
= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)
= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)
c) (x-2)(x+2)-(x-2)2
=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)
d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
= \(8x^3+y^3-\left(8x^3-y^3\right)\)
= \(8x^3+y^3-8x^3+y^3\)
= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)
a ) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(5x+x^3\right)\)
\(=\left(x+3\right)\left(x^2-3x+3^2\right)-\left(54+x^3\right)\)
\(=x^3+3^3-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
\(=-27\)
b ) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2.x.y+y^2\right]-\left(2x-y\right)\left[\left(2x\right)^2+2.x.y+y^2\right]\)
\(=\left[\left(2x\right)^3+y^3\right]-\left[\left(2x\right)^3-y^3\right]\)
\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3\)
\(=2y^3\)
a ) (x+3)(x2−3x+9)−(5x+x3)(x+3)(x2−3x+9)−(5x+x3)
=(x+3)(x2−3x+32)−(54+x3)=(x+3)(x2−3x+32)−(54+x3)
=x3+33−(54+x3)=x3+33−(54+x3)
=x3+27−54−x3=x3+27−54−x3
=−27=−27
b ) (2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)(2x+y)(4x2−2xy+y2)−(2x−y)(4x2+2xy+y2)
=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]=(2x+y)[(2x)2−2.x.y+y2]−(2x−y)[(2x)2+2.x.y+y2]
=[(2x)3+y3]−[(2x)3−y3]=[(2x)3+y3]−[(2x)3−y3]
=(2x)3+y3−(2x)3+y3=(2x)3+y3−(2x)3+y3
=2y3